CS 225

Data Structures

February 16 — Trees and Traversal
G Carl Evans



Binary Tree — Defined

A binary tree T is either:

OR



Tree Property: height

height(T): length of the longest path 0
from the root to a leaf

Given a binary tree T: ° e

height(T) =



Tree Property: full
A tree F is full if and only if:

1.

2.



Tree Property: perfect
A perfect tree P is: 0

1. (s ) (x)
2. (n) ()(2) (5



Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For any level k in
[0, h-1], k has 2k nodes. For level h, all
nodes are “pushed to the left”.



Tree Property: complete

A complete tree C of height h, C,:
1.C,={}
2. C, (where h>0) = {r, T, Tr} and either:

T, is and Ty is

OR

T, is and Ty is




Tree Property: complete
Is every full tree complete? 0

(n) D@ &
» @

If every complete tree full?



Trees

“The most important non-linear data

structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

A tree is:



Binary Tree — Defined

A binary tree T is either:

OR



Tree Property: height

height(T): length of the longest path 0
from the root to a leaf

Given a binary tree T: ° e

height(T) =



Tree Property: full
A tree F is full if and only if:

1.

2.



Tree Property: perfect
A perfect tree P is defined in terms of 0

the tree’s height.
() (X

Let P, be a perfect tree of height h, and:

1.



Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For all levels k in
[0, h-1], k has 2k nodes. For level h, all
nodes are “pushed to the left”.



Tree Property: complete
A complete tree C of height h, C,:

1.C,={}
2. C, (where h>0) = {r, T, Tr} and either:
T, is and Ty is
OR

T, is and Ty is




Tree Property: complete
Is every full tree complete? 0

OJOONO
» @

If every complete tree full?



Tree ADT



Tree ADT

insert, inserts an element to the tree.

remove, removes an element from the tree.

traverse,



BinaryTree.h

oo Jdo Ul WD K

RRRRRRRRBRR R
WOJdoOULd WNR OV

#pragma once

template <class T>
class BinaryTree {
public:
/* ... */

private:




Trees aren’t new:

(< (/)c
© (/);/r \Xr
ONOONORIILIFIEIA LI LRI
© siviy 990 9 8 0
\ A
o 0




How many nullptrs?

Theorem: If there are n data items in our representation of
a binary tree, then there are nullptrs.




How many nullptrs?

Base Cases:

NULLS(0):

NULLS(1):

NULLS(2):



How many nullptrs?

Base Cases:

NULLS(3):



How many nullptrs?

Induction Hypothesis:



How many nullptrs?

Consider an arbitrary tree T containing k nodes:



Traversals



Traversals

49 | template<class T>

50 | void BinaryTree<T>:: Order (TreeNode * cur)
51| {

52
53
54
55

56

57
58|}




Traversals

49

50

51

52

53

54

55

56

57
58

template<class T>
void BinaryTree<T>:: Order (TreeNode * cur) ({
if (cur '= NULL) {

Order (cur->left) ;

Order (cur->right) ;




Traversals

49

50

51

52

53

54

55

56

57
58

template<class T>
void BinaryTree<T>:: Order (TreeNode * cur) ({
if (cur '= NULL) {

Order (cur->left) ;

Order (cur->right) ;




A Different Type of Traversal



A Different Type of Traversal

*

RHOWVWOO JdJoUlbd WNER

template<class T>
void BinaryTree<T>: :levelOrder (TreeNode * root) ({




Traversal vs. Search

Traversal

Search



Search: Breadth First vs. Depth First
Strategy: Breadth First Search (BFS)

Strategy: Depth First Search (DFS)



Dictionary ADT

Data is often organized into key/value pairs:

UIN =2 Advising Record

Course Number = Lecture/Lab Schedule
Node = Incident Edges

Flight Number =» Arrival Information
URL = HTML Page



Dictionary.h

oo Jdo Ul WD K

NNNRRRRBRRBRRRRBRRR
NFRFOoOWO®JIOULdWNE O

#pragma once

class Dictionary {
public:

private:

//




Binary Tree as a Search Structure




Binary Tree (BST)

A BST is a binary tree T such
that:




BST.h

oo Jdo Ul WD K

NNNRRRRBRRBRRRRBRRR
NFRFOoOWO®JIOULdWNE O

#pragma once

template <class K, class V>
class BST {
public:

BST() ;
void insert(const K key, V wvalue);
V remove (const K & key);
V find(const K & key) const;
Treelterator traverse() const;

private:




template<class K,

class V>

_find(TreeNode *& root, const K & key) const ({







template<class K, class V>

_insert (TreeNode *& root, const K & key) ({







template<class K, class V>

_remove (TreeNode *& root, const K & key) {




remove (40) ;



remove (25) ;



remove (10) ;



remove (13) ;



