Combining bloom filters

Given the following bloom filters, write a bloom filter which contains all the items present in both filters.

	$[0]$	\mathbf{O}	$[0]$	\mathbf{O}	$[0]$
$[1]$	$\mathbf{1}$	${ }^{[1]}$	$\mathbf{1}$	$[1]$	
$[2]$	$\mathbf{1}$	${ }^{[2]}$	\mathbf{O}	$[2]$	
$[3]$	\mathbf{O}	$[3]$	\mathbf{O}	$[3]$	
$[4]$	$\mathbf{1}$	$[4]$	$\mathbf{1}$	$[4]$	
$[5]$	\mathbf{O}	$[5]$	$\mathbf{1}$	$[5]$	
$[6]$	\mathbf{O}	$[6]$	\mathbf{O}	$[6]$	

Sequence Bloom Trees

Given the bit vectors (1010), (0010), (0001), and (0101), draw a sequence bloom tree that stores all vectors as leaves. Consider how the arrangement of leaves can affect the usefulness of the tree!

Counting Bloom Filter: Insertion

Construct a counting BF. $\mathbf{S}=\{\mathbf{1 6}, \mathbf{8}, \mathbf{4}, \mathbf{1 3}, \mathbf{2 9}, \mathbf{1 1}, 22\}$, $\mathbf{h 1}(\mathbf{k})=\mathbf{k} \% \mathbf{7}, \mathbf{h 2}(\mathbf{k})=\mathbf{2 k + 1} \% 7$

$[0]$	
$[1]$	
$[2]$	
$[3]$	
$[4]$	
$[5]$	
$[6]$	

Counting Bloom Filter: Deletion

Which of the following items cannot be deleted at least once?
$\mathbf{S}=\{\mathbf{o}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\}, \mathbf{h}(\mathbf{k})=\mathbf{k} \% \mathbf{5}$,

	$\mathbf{5}$
$[1]$	$\mathbf{2}$
$[2]$	$\mathbf{1}$
$[3]$	$\mathbf{3}$
$[4]$	$\mathbf{7}$

What is the downside to allowing deletion?

CBF: Minimal Increase

If X hashes to indices $\mathrm{o}, 2$, and 3 what is our best estimate of X 's current count? How can we adjust insertion to take that into account?

	$\mathbf{3}$
$[1]$	$\mathbf{4}$
$[2]$	$\mathbf{2}$
$[3]$	$\mathbf{1}$
$[4]$	$\mathbf{4}$
$[5]$	$\mathbf{6}$
$[6]$	$\mathbf{8}$

CBF: Recurring Minimum

In the above example, X only has a single minimum value. What does this mean and what can we do to improve our accuracy for counting the frequency of X ?

Cardinality

Cardinality is a measure of:

Cardinality Estimation

If I randomly sampled values from $0-1000$ (no repeats) and told you that the minimum value was 300 , what is your best estimate for the cardinality in the random set?

What if the minimum value was 20 ?

K-minimum Estimation

Will the k-th minimum give me a better, worse, or the same estimation accuracy as the minimum? Why?

CS 225 - Things To Be Doing:

1. Continue working on mp _schedule
2. Either work on your final project or prepare for final exam
