

#32: MSTs: Prim's Algorithm

April 11, 2022 · *G Carl Evans*

Partition Property

Consider an arbitrary partition of the vertices on ${\bf G}$ into two subsets ${\bf U}$

and **V**.

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Proof in CS 374!

Partition Property Algorithm

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

Prim's Minimum Spanning Tree Algorithm


```
Pseudocode for Prim's MST Algorithm
    PrimMST(G, s):
 2
      Input: G, Graph;
3
             s, vertex in G, starting vertex of algorithm
      Output: T, a minimum spanning tree (MST) of G
 4
 5
 6
      foreach (Vertex v : G):
 7
        d[v] = +inf
 8
        p[v] = NULL
9
      d[s] = 0
10
11
      PriorityQueue Q // min distance, defined by d[v]
12
      Q.buildHeap(G.vertices())
13
      Graph T
                        // "labeled set"
14
15
      repeat n times:
16
        Vertex m = Q.removeMin()
17
        T.add(m)
18
        foreach (Vertex v : neighbors of m not in T):
19
          if cost(v, m) < d[v]:
20
            d[v] = cost(v, m)
21
            p[v] = m
22
23
      return T
```

Running Time of MST Algorithms

Kruskal's Algorithm:

Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between \mathbf{n} and \mathbf{m} ?

Kruskal's MST	Prim's MST

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or O(1)*. How does that change Prim's Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

Kruskal's MST	Prim's MST

Shortest Path Home:

CS 225 – Things To Be Doing:

- 1. Get your projects approved and start work on them.
- 2. mp_mazes due today.
- **3.** No new mp this week.
- **4.** Daily POTDs are ongoing.