

Partition Property

Consider an arbitrary partition of the vertices on \mathbf{G} into two subsets \mathbf{U} and \mathbf{V}.

Let \mathbf{e} be an edge of minimum weight across the partition.

Then \mathbf{e} is part of some minimum spanning tree.

Proof in CS 374 !

Prim's Minimum Spanning Tree Algorithm
 Pris Minit Spaning Tree Algorith

Partition Property Algorithm

	Adj. Matrix	Adj. List
Heap		
Unsorted Array		

Pseudocode for Prim's MST Algorithm	
1	PrimMST (G, s) :
2	Input: G, Graph;
3	s, vertex in G, starting vertex of algorithm
4	Output: T, a minimum spanning tree (MST) of G
5	
6	foreach (Vertex v : G) :
7	$\mathrm{d}[\mathrm{v}]=$ +inf
8	$p[v]=$ NULL
9	$d[s]=0$
10	
11	PriorityQueue Q // min distance, defined by d[v]
12	Q.buildHeap (G.vertices())
13	Graph T // "labeled set"
14	
15	repeat n times:
16	Vertex m = Q.removeMin()
17	T. add (m)
18	foreach (Vertex v : neighbors of m not in T):
19	if cost $(\mathrm{v}, \mathrm{m})<\mathrm{d}[\mathrm{v}]$:
20	$\mathrm{d}[\mathrm{v}]=\operatorname{cost}(\mathrm{v}, \mathrm{m})$
21	$\mathrm{p}[\mathrm{v}]=\mathrm{m}$
22	
23	return T

Running Time of MST Algorithms

Kruskal's Algorithm:
Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?
...what does this imply about the relationship between \mathbf{n} and \mathbf{m} ?

Kruskal's MST	Prim's MST

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or $\mathrm{O}(1)^{*}$. How does that change Prim's Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

Kruskal's MST	Prim's MST

Shortest Path Home:

CS 225 - Things To Be Doing:

1. Get your projects approved and start work on them.
2. mp_mazes due today.
3. No new mp this week.
4. Daily POTDs are ongoing.
