Disjoint Sets Running Time:

- Worst case running time of find(k):
- Worst case running time of union(r1, r2), given roots:
- New function: "Iterated Log":

$$
\log ^{*}(\mathbf{n}):=
$$

- Overall running time:
- A total of \mathbf{m} union/find operation runs in:

Graphs

Motivation:

Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:

1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

Graph Vocabulary

Consider a graph \mathbf{G} with vertices \mathbf{V} and edges $\mathbf{E}, \mathbf{G}=(\mathbf{V}, \mathbf{E})$.

> Incident Edges: $\mathbf{I}(\mathbf{v})=\{(\mathbf{x}, \mathbf{v})$ in $\mathbf{E}\}$

Degree(v): |I|
Adjacent Vertices: $A(v)=\{x:(x, v)$ in $E\}$

Path $\left(\mathrm{G}_{2}\right)$: Sequence of vertices connected by edges

Cycle $\left(\mathrm{G}_{1}\right)$: Path with a common begin and end vertex containing at least three vertices.

Simple Graph(G): A graph with no self loops or multi-edges.
Subgraph(G): $\mathbf{G}^{\prime}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right):$

$$
V^{\prime} \in V, E^{\prime} \in E \text {, and }(u, v) \in E \rightarrow u \in V^{\prime}, v \in V^{\prime}
$$

Graphs that we will study this semester include:
Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Size and Running Times

Running times are often reported by \mathbf{n}, the number of vertices, but often depend on \mathbf{m}, the number of edges.

For arbitrary graphs, the minimum number of edges given a graph that is:

Not Connected:
Minimally Connected*:

The maximum number of edges given a graph that is:
Simple:

Not Simple:

The relationship between the degree of the graph and the edges:

Graph ADT

Data

1. Vertices
2. Edges
3. Some data structure maintaining the structure between vertices and edges.
```
Functions
insertVertex(K key);
insertEdge(Vertex v1, Vertex v2,
        K key);
removeVertex(Vertex v) ;
removeEdge(Vertex v1, Vertex v2);
incidentEdges (Vertex v);
areAdjacent(Vertex v1, Vertex v2);
origin(Edge e);
destination(Edge e);
```

Graph Implementation \#1: Edge List

Data Structures:

Vertex Collection:

Edge Collection:

Operations on an Edge List implementation:

insertVertex(K key):

- What needs to be done?
removeVertex(Vertex v):
- What needs to be done?
incidentEdges(Vertex v):
- What needs to be done?
areAdjacent(Vertex v1, Vertex v2):
- Can this be faster than G .incidentEdges (v1). contains (v2)?
insertEdge(Vertex v1, Vertex v2, K key):
- What needs to be done?

Graph Implementation \#2: Adjacency Matrix

CS 225 - Things To Be Doing:

1. mp_traversals Today!
2. Final Project proposals being graded now
3. Daily POTDs are ongoing!
