CS 2 #5: C++ Copying and Overloading Cubes Unite!
/7 N\ . .
2 5] January 28, 2022 - G Carl Evans Consider a Tower made of three Cubes:

. . Tower.h
Returning from a function 1 | #pragma once
Identical to passing into a function, we also have three choices on how 2|
memory is used when returning from a function: 3 | #include "cs225/Cube.h
4 | using cs225: :Cube;
Return by value: 5
| 15 [Cube joinCubes (const Cube &sl, const Cube &s2) | 6 | class Tower {
Return by reference: 7 public:
8 Tower (Cube c, Cube *ptr, const Cube &ref);
— 9 Tower (const Tower & other);
| 15 [cube &joinCubes(const Cube &sl, const Cube &s2) | 10
...remember: never return a reference to stack memory! 11 private:
Return by pointer: 12 Cube cube_;
| 15 | Cube *joinCubes (const Cube &sl, const Cube &s2) | 1 Cube *ptr_;
14 const Cube &ref;
...remember: never return a reference to stack memory! 15 | };
Copy Constructor) i Automatic Copy Constructor Behavior:
When a non-primitive variable is passed/returned by value, a copy The behavior of the automatic copy constructor is to make a copy of
must be made.) every variable. We can mimic this behavior in our Tower class:
All copy constructors will:
Tower . cpp
. 10 | Tower: :Tower (const Tower & other) ({
The automatic copy constructor: 11 cube = other.cube ;
1. 12 ptr__= other .ptr_;_
13 ref = other.ref ;
14 | }
2. . 10 | Tower: :Tower (const Tower & other) : cube_(other.cube),
To define a custom copy constructor: 11 ptr (other.ptr), ref (other.ref) { }
cs225/Cube.h ...we refer to this as a because:
g Cl:z;l?‘:be { Deep Copy via Custom Copy Constructor:
ic: .
6 Cube () ; // default ctor Alternatively, a custom copy constructor can perform a deep copy:
7 Cube (double length); // l-param ctor Tower .cpp
8 11l | Tower: :Tower (const Tower & other) {
9 12 // Deep copy cube :
10 double getVolume () ; 13 -
11 double getSurfaceArea() ; 14
12 15
13 private: 16 // Deep co tr_:
14 double length_; 17 P COPY PEE
15 | }; 18
19
20 // Deep copy ref :
21
22
23 |}

Destructor One Very Powerful Operator: Assignment Operator

The last and final member function called in the lifecycle of a class is T

the destructor.
|Cube & operator=(const Cube & other);

Purpose of a destructor:

The automatic destructor: Cube. cpp
. . | Cube & Cube::operator=(const Cube & other) { ... }
1. Like a constructor and copy constructor, an automatic
destructor exists only when no custom destructor is defined.
2. [Invoked]: . .
Functionality Table:
3. [Functionality]: Copies an object | Destroys an

object

Custom Destructor:

Copy constructor

Cube.h
5 | class Cube { Copy Assignment
6 public:
7 Cube () ; // default ctor operator
8 Cube (double length); // l-param ctor Destructor
9 Cube (const Cube & other); // custom copy ctor
10 ~Cube () ; // destructor, or dtor
11 e
...necessary if you need to delete any heap memory!
yuy y P Iy The Rule of Three

If it is necessary to define any one of these three functions in a class, it

Overloading O t
e acing peraiors will be necessary to define all three of these functions:

C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * /% ++ -- L.
Bitwise & | A~ < > 2.
Assignment = .
Comparison = I= > < >= <= The Rule of Zero
Logical 'oss ||
Other nmn o ->
General Syntax: CS 225 and Rule Three/Five/Zero
Adding overloaded operators to Cube: In CS 225 We will:
Cube.h Cube. cpp
1 | #pragma once P VA S 74
2 40
3 | class Cube { 41
4 P"%icz 22 CS 225 — Things To Be Doing:
10 44 .. .
11 45 1. Finish lab_intro
12 46 2. Start on mp_ stickers
iz ZZ 3. First PotD released today due Monday.
. // ... VA S 74

