CS 2 #2: Classes and Reference Variables Hierarchy in C++: o)
2 5| January 21, 2022 - G Carl Evans There cube class we’re building might not be the only cube class.

Large libraries in C++ are organized into

. Cube.h Cube.
Creating New Types 1% = : B 24
. . . pragma once 1 | #include "Cube.h
In data structures, we will be learning and creating new types of 2 2
structures to store data. We will start simply — by the end, we will 3 | namespace cs225 { -:* namespace cs225 {
. . . . ou e
have types we built being the building blocks for new types! ?, ;Il]}aaiicffube { Cube: : getVolume () {
: 5 t 1 th *
< < 6 double getVolume () ; return 1Z:gth_ * length ;
Big Idea: Encapsulation 7 6| — —

Default Constructor:
Every class in C++ has a constructor — even if you didn’t define one!

e Automatic/Implicit Default Constructor:

e Custom Default Constructor:

Cube.h Cube. cpp
. _ . 4 | class Cube { 3 | Cube: :Cube () {
Our First Class — Cube: 5 public: 1
Cube.h Cube. cpp 6 Cube () ; 5
1 | #pragma once 1 | #include "Cube.h" /* .00 %/ 61}
2 2
3 | class Cube { 3 | double Cube::getVolume() { Custom, Non-Default Constructors:
4| public: e We can provide also create constructors that require parameters when
5 double getVolume () ; 5 e e e 4 . .
6 6| initializing the variable:
7 7 Cube.h Cube. cpp
8 8
9 9 4 | class Cube { 3 | Cube: :Cube (double length) {
10 . 10 5| public: 4
11 private: 11 6 Cube (double length) ; 5
12 12 /* ... %/ 6|}
13 13
14 14 . .
s s Our First Program:
16 | }; 16 main.cpp
1 | #include "Cube.h"
Public vs. Private: _?:, #include <iostream>
Situation Protection Level 4 | int main() {
Rk . K . 5 cs225: :Cube c;
cube functionality provided to client code 6| std::cout << "Volume: " << c.getVolume() << std::endl;
7 return 0;
Variable containing data about the Cube 8|1
...run this yourself: run make and ./main in the lecture source code.
Helper function used in Cube

However, our program is unreliable. Why?

Default Constructor:
Every class in C++ has a constructor — even if you didn’t define one!

e Automatic/Implicit Default Constructor:

e Custom Default Constructor:

Pointers and References
Often, we will have direct access to our object:

| | Cube s1; // A variable of type Cube

Occasionally, we have a reference or pointer to our data:

Cube & rl = sl; // A reference variable of type Cube
Cube * pl; // A pointer that points to a Cube

Cube.h Cube. cpp
Z class Cube { 5 Cube: :Cube () {
5 public: 4
6 Cube () ; 5
/* ... */ 6|}

Custom, Non-Default Constructors:
We can provide also create constructors that require parameters when
initializing the variable:

Cube.h Cube. cpp
4 | class Cube { 3 | Cube: :Cube (double length) ({
5 public: 4
6 Cube (double length) ; 5
/* ... */ 6|}

Pointers

Unlike reference variables, which alias another variable’s memory,
pointers are variables with their own memory. Pointers store the
memory address of the contents they’re “pointing to”.

Three things to remember on pointers:

1.
2.
3.
main.cpp
4 | int main() {
5 cs225: :Cube c;
6 std: :cout << "Address storing ‘c’:" << &c << std::endl;
7
8 cs225: :Cube *ptr = &c;
9 std::cout << "Addr. storing ptr: "<< &ptr << std::endl;
10 std::cout << "Contents of ptr: "<< ptr << std::endl;
11
12 return O;
13 | }

Puzzle #1: How do we fix our first program?

puzzle.cpp w/ above custom constructor

8 cs225: :Cube c;
9 cout << "Volume: " << c.getVolume() << endl;

...run this yourself: run make puzzle and ./puzzle in the lecture source code.

Solution #1:

Solution #2:

The beauty of programming is both solutions work! There’s no one right
answer, both have advantages and disadvantages!

Indirection Operators:
&v

*v

CS 225 — Things To Be Doing:

1. Setup your computer
2. Join us on Discord

