String Algorithms and Data Structures Boyer-Moore

CS 199-225
February 14, 2022
Brad Solomon

Department of Computer Science

A_zval reflection

Time

Learning Objectives met
\square What was bad about the assignment?

A_zalg due today!

Remember you can re-use code from a_zval
You should not use code from the internet!

Exact Pattern Matching w/ Z-algorithm

Find instances of P in T
'instances': An exact, full length copy

Why continue?

The Z-algorithm is:
The Z-algorithm is: $O(|P|+|T|)$ time
An alphabet-independent solution
The Z-algorithm is less good at:
Searching for a set of patterns (Aho-Corasick)
Running in sub-linear* time (Boyer-Moore)

* - in practice, not theory

Exact pattern matching w/ Boyer-Moore

Boyer Moore preprocesses the pattern

Find instances of P in T
'instances': An exact, full length copy

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: c at
T:carl carried the cat cat - -------------------------------0123456789 ...

What does this alignment tell us?

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: cat
T:carl carried the cat cat 0123456789 ...

What does this alignment tell us?

1) Our pattern doesn't match at this alignment
car
There is no 'r' in
cat

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: c at
T:carl carried the cat cat 0123456789 ...

What does this alignment tell us?

2) Our pattern doesn't match at later alignments
car
There is no 'r' in
cat 'cat'!

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: c at
T:carl carried the cat cat 0123456789 ...

What does this alignment tell us?

2) Our pattern doesn't match at later alignments
car
There is no 'r' in
cat 'cat'!

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: c at
T:carl carried the cat c at
cat skip!
cat skip!
What does this alignment tell us?
2) Our pattern doesn't match at later alignments
car
There is no 'r' in
cat
'cat'!

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: word
T: There would have been a ...

$0123456789 \ldots$

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: word
T: There would have been a ...

$0123456789 \ldots$

1) Our pattern doesn't match at this alignment

T: woul
P: word

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: word
T:There would have been a ...
--------word
0123456789 ...

How many alignments can we skip?
2) Our pattern doesn't match at later alignments

$$
\begin{aligned}
& T: \text { woul There is no 'u' in } \\
& P: \text { word } \quad \text { 'word'! }
\end{aligned}
$$

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: word
T:There would have been a ... ---------word ---------------------*
0123456789 ...

How many alignments can we skip?
2
2) Our pattern doesn't match at later alignments

$$
\begin{aligned}
& T: \text { woul There is no 'u' in } \\
& P: \text { word } \quad \text { 'word'! }
\end{aligned}
$$

Boyer-Moore

Intuition: Learn from alignments to avoid others
P: word
T: There would have been a ...

word skip! word
How many alignments can we skip?
2
2) Our pattern doesn't match at later alignments

T: woul
There is no ' u ' in
P: word

Boyer-Moore

Intuition: Learn from alignments to avoid others

> P: T A G A C

T: G TA GATGGCTGATCGAGTAGCGGC G

How many alignments can we skip? 3

Boyer-Moore

Intuition: Learn from alignments to avoid others

```
P:TAGAC
T: GTAGATGGCTGATCGAGTAGCGGCG
-'TAGA
    TAGAC skip!
        TAGAC skip!
        TAGAC skip!
            TAGAC
How many alignments can we skip?

\section*{Boyer-Moore}

Intuition: Learn from alignments to avoid others
P: A A B B B
T: AAABABAAAAAAAAAAAAAAAA


How many alignments can we skip? 1

AABAB
There IS an A in
AABBB

\section*{Boyer-Moore}

Intuition: Learn from alignments to avoid others

> P: A A B B B

T: A A A B A B A A A A A A A A A A A A A A A A


A A B B B skip!
A A B B B the first match we encounter!

How many alignments can we skip? 1

\section*{Boyer-Moore: Bad Character rule}

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past mismatched character. (c) If there was no mismatch, don't skip
```

Step 1:
T: C C T TCT GCTACCTTTTGCGCGCGCGCGGAA
P: C〇TTTGC
Case (a)
T: CCTOCTGCTACCTTTTGCGCGCGCGCGGAA
Step 2:
P:
Case (b)
Step 3:
T: CCTTC〇GCTACCTTTTGCGCGCGCGCGGAA
P: $\quad \therefore$ CTTTTGC
Case (b)
(etc)
Step 7:
$\begin{array}{lc}\text { T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA } \\ P: & \text { CCTTTTGC }\end{array}$
Case (c)

```

\section*{Boyer-Moore: Bad Character rule}
```

Step 1: \quad : CCTTCTGCTACCTtttgcgCGCGCGCGGAA
P: CCTTTTGC \quad CCTTTTG
Step 2: T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P: CCCTTTGC
Step 3:
T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P: CCCCTTTGC skip!
$\uparrow \uparrow \uparrow$

```

We skipped three alignments

Can we do anything to make this better?

\section*{Boyer-Moore: Bad Character rule}

Which of the following alignments skips the most?
T: TATAT...
A)
P: TAGAC
T: TTGAT...
B)
P: TAGAC
T: TAGAT...
T: TAGTT...
C)
P: TAGAC
D)
P: TAGAC

\section*{Boyer-Moore: Bad Character rule improvement}

Continue to test alignment from left-to-right
... but compare characters from right to left.
P: TAGAC
T: G TA GATGGCTGATCGAGTAGC G GCG
\[
\text { - T A G A C }- \text { - - - - - - - - - - - - - - - - - - - - - - - - - - - }
\]

\section*{Right-to-left-scanning w/ BC Rule}
```

P: word
T:There would have been a ...
--------word

```


How many alignments do we skip?

\section*{Right-to-left-scanning w/ BC Rule}

P: word
T: There would have been a ...
 word
word
word

How many alignments do we skip?

\section*{Right-to-left-scanning w/ BC Rule}

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past mismatched character. (c) If there was no mismatch, don't skip
```

Step 1:
T: C C T TCT GCTACCTTTTGCGCGCGCGCGGAA
P: C®TTTTGC
Case (a)
T: C C T T C T GCTACCTTTTGCGCGCGCGCGGAA
Step 2:
P: $\quad \therefore$ CTTTTGC
Case (b)
Step 3:
T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P: CCTTTTGC
Case (c)
Step 4:
T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
$P: \quad$ C T T T TiG̈́c
Case (a)
(etc)

```

\section*{Right-to-left-scanning w/ BC Rule}
```

Step 1: \quad C. CTTCTGCTACCTTTTGCGCGCGCGCGGAA
P: CCTTTTGC
Step 2: $\quad T:$ C CTTCTGCTACCTTTTGCGCGCGCGCGGAA
P: CCTTTTGC
Step 3:
T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
$P: \quad$ CCTTTTGC
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

```

Up to step 3, we skipped 8 alignments
5 characters in \(T\) were never looked at

\section*{Right-to-left-scanning w/ BC Rule}

Learn from character comparisons to skip pointless alignments
1. When we hit a mismatch \(c\), move \(P\) along until \(c\) becomes a match (or \(P\) moves past \(c\) )
"Bad character rule"
2. Try alignments in one direction, but do character "Right-to-left comparisons in opposite direction scanning"

\section*{How do we put the first two rules in practice?}

\section*{Exact pattern matching w/ Boyer-Moore}

Boyer Moore preprocesses the pattern


Find instances of \(P\) in \(T\)
'instances': An exact, full length copy

Boyer-Moore: BC rule preprocessing
Preprocessing requires two args: \(\quad P: T C G C \quad \Sigma: A C G T\)

The goal is to produce a table which tracks skips
\[
P
\]
\(\Sigma\)
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{l|}{} & T & C & G & C \\
\hline A & & & & \\
\hline C & & & & \\
\hline G & & & & \\
\hline T & & & & \\
\hline
\end{tabular}

\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args: \(\quad P: T C G C \quad \Sigma: A C G T\)

The goal is to produce a table which tracks skips


T: ? ? ? T ? ? ? ? ? ?
P: T C G C

\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args: \(\quad P: T C G C \quad \Sigma: A C G T\)

The goal is to produce a table which tracks skips


T: ? ? ? T ? ? ? ? ? ?
P: © C GC

\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args: \(\quad P: T C G C \quad \Sigma: A C G T\)

The goal is to produce a table which tracks skips

\[
\begin{aligned}
& \text { T: ? ? ? A ? ? ? ? ? ? } \\
& \text { PT G C }
\end{aligned}
\]

\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args: \(\quad P: T C G C \quad \Sigma: A C G T\)

The goal is to produce a table which tracks skips


T: ? ? ? A? ? ? ? ? ?
PTCGC

\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args: \(\quad P: T C G C \quad \Sigma: A C G T\)

The goal is to produce a table which tracks skips
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & & T & C & G & C \\
\hline \multirow{4}{*}{\(\Sigma\)} & A & 0 & 1 & 2 & 3 \\
\hline & C & 0 & - & 0 & - \\
\hline & G & 0 & 1 & - & 0 \\
\hline & T & - & 0 & 1 & 2 \\
\hline
\end{tabular}
\(T:\) ? ? A ? ? ? ? ? ? ?
P: T C G C
\(T:\) ? ? C ? ? ? ? ? ?
P: TCGC
\(T:\) ? ? G ? ? ? ? ? ?
P: T C G C
T: ? ? T ? ? ? ? ? ?
P: TCGC

\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args
P: B A B A A A B
\(\Sigma:\) A B


\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args:
P: B A B A A A B
\(\Sigma: A B\)
For each character \(p\) in pattern \(P\)
For each character \(c\) in alphabet \(\Sigma\)
Find the closest previous instance of \(p\) (to the left of \(c\) ).


\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args:
P: B A B A A A B
\(\Sigma: A B\)
For each character \(p\) in pattern \(P\)
For each character \(c\) in alphabet \(\Sigma\)
Find the closest previous instance of \(p\) (to the left of \(c\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c|}{} & \multicolumn{7}{c|}{ Pattern } \\
\cline { 2 - 8 } & B & A & B & A & A & A & B \\
\hline A & 0 & 1 & 0 & 1 & & & \\
\hline B & 0 & 0 & 1 & 0 & & & \\
\hline
\end{tabular}

\section*{Boyer-Moore: BC rule preprocessing}

Preprocessing requires two args:
P: B A B A A B
\(\Sigma:\) A B
For each character \(p\) in pattern \(P\)
For each character \(c\) in alphabet \(\Sigma\)
Find the closest previous instance of \(p\) (to the left of \(c\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c|}{} & \multicolumn{7}{c|}{ Pattern } \\
\cline { 2 - 8 } & B & A & B & A & A & A & B \\
\hline A & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline B & 0 & 0 & 1 & 0 & 1 & 2 & 3 \\
\hline
\end{tabular}

\section*{Assignment 4: a_bmoore}

Learning Objective:

Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Due: February 21th 11:59 PM
Consider: Optimal preprocessing is \(\theta(|P||\Sigma|)\). Can you code it?

\section*{Boyer-Moore: Using the BC Table}

Try alignments from left-to-right and match characters from right-to-left
When we encounter a mismatch, skip the calculated number of alignments
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{\(P\)} \\
\hline & & T & C & G & (C) \\
\hline \multirow{4}{*}{\(\Sigma\)} & A & 0 & 1 & 2 & 3 \\
\hline & C & 0 & - & 0 & - \\
\hline & G & 0 & 1 & - & 0 \\
\hline & (T) & - & 0 & 1 & (2) \\
\hline
\end{tabular}

T: T T T T T T T T T T
P: © TC G(C)

\section*{Boyer-Moore: Using the BC Table}

Try alignments from left-to-right and match characters from right-to-left
When we encounter a mismatch, skip the calculated number of alignments
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{\(P\)} \\
\hline \multirow{5}{*}{\(\Sigma\)} & & T & C & G & C \\
\hline & A & 0 & 1 & 2 & 3 \\
\hline & C & 0 & - & 0 & - \\
\hline & G & 0 & 1 & - & 0 \\
\hline & T & - & 0 & 1 & 2 \\
\hline
\end{tabular}

T: G G G G G G G G G G
P: TCGC

\section*{Boyer-Moore: Using the BC Table}

Try alignments from left-to-right and match characters from right-to-left
When we encounter a mismatch, skip the calculated number of alignments
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{\(P\)} \\
\hline \multirow{5}{*}{\(\Sigma\)} & & T & C & G & C \\
\hline & A & 0 & 1 & 2 & 3 \\
\hline & C & 0 & - & 0 & - \\
\hline & G & 0 & 1 & - & 0 \\
\hline & T & - & 0 & 1 & 2 \\
\hline
\end{tabular}

T: AATCAATAGC P: T C G C

\section*{Boyer-Moore: Tracking total skips}


T: B B B B

T: B B B B B

T: B B B B B B

\section*{Boyer-Moore:Tracking total skips}


T: B B B B

\section*{Assignment 4: a_bmoore}

Learning Objective:

Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Due: February 21th 11:59 PM
Consider: Our Boyer-Moore is theoretically slower than Z-algorithm.
But is it slower in practice? What is our total character comparisons?```

