String Algorithms and Data Structures Z-values and the Z-algorithm

CS 199-225
January 31, 2022
Brad Solomon

Department of Computer Science

Assignment 1: a_naive due today!

Don't forget to submit feedback on Moodle

About how many hours did you spend in total on	O Under 1 hour
this assignment? ${ }^{(1)}$ Edit	. Between 1-2 hours
	- Between 2-3 hours
	Between 3-4 hours
	Over 4 hours
The lecture was helpful for completing this assignment. (- Edit	1-Strongly disagree
	- 2 - Disagree
	3 - Neither agree nor disagree
	4-Agree
	5 - Strongly agree
After completing this assignment, I have a good understanding of the material taught. (©	○-1 already knew the material
	-1-Strongly disagree
	$\bigcirc 2$ - Disagree
	3 - Neither agree nor disagree
	4-Agree
	5 - Strongly agree

Exact Pattern Matching

Find instances of P in T
'instances': An exact, full length copy

Exact Pattern Matching

What's a simple algorithm for exact matching?
P: word
T: There would have been a time for such a word
word word word word word word word word word
word word word word word word word word word word word word word word word word
occurrence word word

Try all possible alignments. For each, check if it matches. This is the naïve algorithm.

Exact Pattern Matching

What is good about the naive solution?

What is bad?

Exact Pattern Matching

What is our time complexity?

$$
(n=|P|, \quad m=|T|)
$$

(\# of alignments) \times (cost of an alignment)

Exact Pattern Matching

What is our time complexity?

$$
(n=|P|, \quad m=|T|)
$$

(\# of alignments) \times (cost of an alignment)
P: $\leftarrow n \rightarrow$
T :

P can fit at each `position' along T except the edge

Exact Pattern Matching

What is our time complexity?

$$
(n=|P|, \quad m=|T|)
$$

P: aaaa
T: aa
aaaa aaaa

There are \qquad positions which extend past the edge of T

Exact Pattern Matching

What is our time complexity?

$$
(n=|P|, \quad m=|T|)
$$

$$
\text { (m-n+1) } \times \text { (cost of an alignment) }
$$

P: aaaa

T: aa
aaaa aaaa
\qquad characters.

Exact Pattern Matching

What is our time complexity? $\quad(n=|P|, \quad m=|T|)$

$$
\theta((m-n+1) \times n)
$$

String Algorithms in Genomics

P: Read ($\mathrm{n}=\sim 50-150$)

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTAGGCCTTC

T: Reference ($\mathrm{m}=\sim 3$ billion)

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGGATCCACCCAGCGCCTTGGCCTAAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATT GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAG TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCC/ TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAG TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGC1 AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTC CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAA ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTITCTACCCCA AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAAG

String Algorithms in Genomics

String Algorithms in Genomics

Improving exact pattern matching

How can we do better than the naïve algorithm?
... If we have infinite space?
... If I tell you the pattern ahead of time?
... If I tell you the text ahead of time?

Exact Pattern Matching w/ Z-algorithm

Find instances of P in T
'instances': An exact, full length copy

The Z-value [$Z_{i}(S)$]
Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position i, that matches a prefix of S.

0123456789
 $S: \quad$ T T C G T T A G C G

$$
\begin{array}{ll}
Z_{0}(S)= & Z_{3}(S)= \\
Z_{1}(S)= & Z_{4}(S)= \\
Z_{2}(S)= & Z_{5}(S)=
\end{array}
$$

The Z-value $\left[Z_{i}(S)\right]$
Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position i, that matches a prefix of S.

0123456789
 $S: \quad$ T T C G T T A G C G

$$
\begin{array}{ll}
Z_{0}(S)=10 & Z_{3}(S)= \\
Z_{1}(S)=1 & Z_{4}(S)= \\
Z_{2}(S)=0 & Z_{5}(S)=
\end{array}
$$

The Z-value [$Z_{i}(S)$]

Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position $i>0$, that matches a prefix of S.

0123456789
 S: \quad T T C G T T A G C G

$$
\begin{array}{ll}
Z_{0}(S)=10 & Z_{3}(S)=0 \\
Z_{1}(S)=1 & Z_{4}(S)=2 \\
Z_{2}(S)=0 & Z_{5}(S)=1
\end{array}
$$

Calculating the Z-values

Naive: Compute the Z-values by explicitly comparing characters (left-toright scan):

$$
Z_{1}=
$$

$$
Z_{5}=
$$

Calculating the Z-values

Naive: Compute the Z-values by explicitly comparing characters (left-toright scan):

$$
\begin{aligned}
& S: \begin{array}{l}
11011001 \\
1011001 \\
011001 \\
11001 \\
1001 \\
001 \\
01 \\
1
\end{array}
\end{aligned}
$$

What is our time complexity?

Pattern matching with the Z-value

Given a Z_{i} value calculator, how do we solve pattern matching?

Find instances of P in T

Z-value Pattern Matching

To solve pattern matching (given P and T), let $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{\$} \boldsymbol{T}$
\$ ='terminal character', outside alphabet

$$
S=P \$ T\left(\begin{array}{ll}
P: & \mathbf{A} \mathbf{A} \quad T: \quad \mathbf{A} \mathbf{A} \mathbf{A} \\
S: & \mathbf{A} \mathbf{A} \$ \mathbf{A} \mathbf{A} \mathbf{A}
\end{array}\right.
$$

Z-value Pattern Matching

To solve pattern matching (given P and T), let $\boldsymbol{S}=\mathbf{P} \boldsymbol{\$} \boldsymbol{T}$
\$ = 'terminal character', outside alphabet

Z-value Pattern Matching

To solve pattern matching (given P and T), let $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{\$} \boldsymbol{T}$
\$ ='terminal character', outside alphabet
$P: \quad$ A A $T: \quad$ AAAA
0123456
S: A A \$ A A A A

$$
Z(S)=[-, 1,0,2,2,2,1]
$$

0123
What Z_{i} values are matches?
What are the matching indices in T ?

Z-value Pattern Matching

P: TT T: СТТА
$S:$
$Z(S)$:

Z-value search pseudo-code

1. Concatenate ($S=P \$ T$)
2. Calculate Z-values for S
3. For $\mathrm{i}<0$, match if $Z_{i}=$

Match is not at i , but instead at

Assignment 2: a_zval

Learning Objective:

Construct a Z-value calculator and measure its efficiency

Demonstrate use of Z-values in pattern matching

Due: February 7th 11:59 PM
Consider: Our goal is $\theta(|P|+|T|)$. Does Z-value search match this?

End-of-class brainstorm

What information does a single Z-value tell us?
If I know $Z_{i-1}(S)$, can I use that information to help me compute $Z_{i}(S)$?

The Z-value (Take 2)

Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position i, that matches a prefix of S.

What information does this give us?

$$
S: 1+6+1+8.648 \quad Z_{4}(S)=2
$$

The Z-value (Take 2)

Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position i, that matches a prefix of S.

What information does this give us?

$$
S: 1+481+8448 \quad Z_{4}=2
$$

The Z-value (Take 2)

Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position i, that matches a prefix of S.

What information does this give us?

$$
\begin{aligned}
0123456789 & \\
S: \text { T TCGTTAGCG } & Z_{4}=2
\end{aligned}
$$

0
0 1

The Z-value (Take 2)

Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position i, that matches a prefix of S.
$Z_{i} \neq 0$ means that my substring $\left(i, Z_{i}\right)$ matches my prefix $\left(0, Z_{i}\right)$

The characters after my substring and prefix must not match!
0
0 1

Calculating the Z-values (Take 2)

Intuition: We can use the previous Z_{1}, \ldots, Z_{i} to compute Z_{i+1} !

$$
Z_{1}=3
$$

0	1	2	3	4	5	7	
A	A	A	A	B	A	A	A
A	A	A	A	B	A	A	A

$$
Z_{2}=2
$$

A	A	A	A	B	A	A	A
A	A	A	A	B	A	A	A

$Z_{5}=3$

A	A	A	A	B	A	A	A
A	A	A	A	B	A	A	A

$Z_{6}=?$

A	A	A	A	B	A	A	A
A	A	A	A	B	A	A	A

Calculating the Z-values (Take 2)

Intuition: We can use the previous Z_{1}, \ldots, Z_{i} to compute Z_{i+1} !

The Z-algorithm (next week) will formalize this process.

