String Algorithms and Data Structures
String Graph Assembly

CS 199-225 April 18,2022
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Assignment 11: a_edist due April 18 11:59 PM!

Last assignment!

String Assembly

READING THE BOOK OF LIFE: THE OVERVIEW

READING THE BOOK OF LIFE: THE OVERVIEW;
Genetic Code of Human Life Is Cracked by Scientists

By NICHOLAS WADE
Published: June 27, 2000

Human Genome Project: 1990-2003

@l]t’- Nt‘-ltl ﬂork Eimcs http://nyti.ms/1tcvLXq

SCIENCE

Man’s Genome From 45,000 Years Ago Is
Reconstructed

OCT. 22, 2014
Carl Zimmer

Team of Rival Scientists Comes Together to Fight Zika

By AMY HARMON MARCH 30, 2016

\ /. X S AANKIDRRNDI A v str= (= 1heeeness

o
-~ o ot e T N,
}/\/ \"(_,\ﬂ> _))/')9}\\1-~)~.—(—|......

= W AN 4 o b1V Do > LR FTT A ERITTEE

,_r

R &

)_‘) {) e kA N N { <

S, N LKELCNADIIREY) I~ =r1rinin
sl N NI NN AF DYDY T oot S =irwiiniis
\-,_(\—L},,/\\/\) ,"’.—‘\'\-.‘l/-\m'«'_.;'\>9l’}‘:\)’\—(—Il"l|l>-'
SCMNASCNANANDLIIF =)= 11e0iniees
#* NG LYl XN T A DN OO TS @ 1w wi S hrrrs v
AN NNANNLANAARNNAATS)= =100,
IRUNN DKL N o2 AT PR rac el

)

N

LY Ny NN N
Y AT X"y

A NMNAAOARMNMONAVYANVRQANAA YA w1l
NN ER N TIN IV TS TN TN Y el " YR

I INIONICNNDLDON P ONC\T\NLN AT P b ™\ b * ™ wp = | = 1L s0ss
NN N N\NN\NAWPNT O NN NN R e oo s A THN
NS P b NN NN N T8 PN NN AP dom 5 8NV 4 ovmes o =) .
P VR, P R YT SN NS N N S e AR e e e N A A PR S e e wm A=

— e — B o A e e Wy g Sgh W TR, B N P N et N N R e wm W m
PN e e SR e R TR e SN PN e S g g g g g g g g —— g— g — - % = m s s
- N e e et - N e e et N et T St T Tt T et et et Tt S s W Wm e wm wm s e
e . e e e e e e N N e e e e T e e e S e s e e W W W o v
S — — — L St et P P P P Gt P P Sn e B W -
LG W A s s STun | W WS S S W SO G WD G P W G WS WS GD N W G S W W WS e e W ®
0GP S Eh G RGP S e eh U S ES R S - o = - Th ED S S h e WS e S e ® w
S - Gl 5 © 5 5 5 5 55 5 5006000606000 600ssses0eas -
...
..................................... -
................... - -o == - e oo eooeee- -
o

......................................
...

A visualization of the recently sequenced Aedes aegypti genome. Each of the 3,752 colored lines is a fragment of
its three chromosomes that could not be fit together without the additional information that the Aedes Genome
Working Group hopes to produce. A 2007 genome map for Aedes aegypti is fragmented into about 10 times as
many pieces. Mark Kunitomi

String Assembly

String Assembly

Whole-genome “shotgun” sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Then fragments it:

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTIT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTITTTIT

“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun

String Assembly

Reconstruct this

GGCGT

GGCGT
GGCGT

TCTAT
CTAT
CGAT
'CTAT

> GGCGT

>>>>>> >

CTATAT

C
C
C
TC
C
C
C
C

cT

GGCT
'CGGCT
CGACT
CGACT

'CGGCT

CG

oNeoNoNONONONG

TAGGCCCTCAATTTTT T
TAGGCCCTCAATTTTT
TAGGCCCTCATTTTTT
TAGCCCCTCATTTT
TAGGCCCTCA
TAGGCC
TAGG

— - - -

TCGGCTCTAGGCCCTCATTTTTT

From
these

String Assembly

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG

e From
| GGCTCTAGGCCCTCATTTTTT
R nstr hi
Constructtnis 1 GGCTCTAGCCCCTCATTTT these
TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT
TATCTCGACTCTAGGCC

GGCGTCTATATCTCG |
> PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP P

String Assembly

:LI :LI ATGGTTAGAATTAAACCCGG
TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC
TACGTAGAGGTCATTAGCC

- — TACGTAGAGGTCATTAGCCG
. — TGCTAATAAACCUAGTGATG

ATGGTTAGAATTAAACCTGGATCTGCTAATAAACCUAGTGATGATGCG

ATAGCACAGGTAGATCCAGTTACGTAGAGGTCATTAGCCGTATTGCTA

ATAAACCTAGTGATGATTCGATAGCGTAGAGGTCATTAGCCTTGTGCT

AATAACAGGTAGATCCGTATACGTAGAGGTCATTACCAGAGGTCATTA
GTTGTGCTAATAAACCTAGTGTAGATGAAGAGGTCATTAGATCTGCTAA

String Assembly @

Input: A set of strings S ={s1,s2, ..., sn} assumed
to be substrings of some underlying text T

Output: The ‘best’ approximation of T

1) Identify all possible overlaps
2) “Assemble” the best possible layout

3) Reconstruct T based on consensus

ldentify Overlaps

Length-/ Overlap: Suffix of X of length >/ matches prefix of Y

Naive: look in X for occurrences of Y’s length-/ prefix. Extend
matches to the right to confirm if the suffix of X matches.

Sav /=3 Extend to right; confirm a length-6
ay L= Eound it prefix of Y matches a suffix of X
X: CTCTAGGCC X: CTCTAGGCC X: CTCTAGGCC
—> —
Y: TAGGCCCTC Y: TAGGCCCTC Y: TAGGCCCTC

—

N\

Look for this in X

ldentify Overlaps

Length-/ Overlap: Suffix of X of length >/ matches prefix of Y

Naive: look in X for occurrences of Y’s length-/ prefix. Extend
matches to the right to confirm if the suffix of X matches.

Sav /=3 Extend to right; confirm a length-6
ay L= Eound it prefix of Y matches a suffix of X
X: CTCTAGGCC X: CTCTAGGCC X. CTCTAGGCC
— >
Y: TAGGCCCTC Y: TAGGCCCTC Y. TAGGCSCTC

N\

Look for this in X

ldentify Overlaps

Length-/ Overlap: Suffix of X of length >/ matches prefix of Y

Naive: look in X for occurrences of Y’s length-/ prefix. Extend
matches to the right to confirm if the suffix of X matches.

For three strings, how many overlaps must be calculated?

CTCTAGGCC

In bulk, there are better ways to do this...

ldentify Overlaps: Generalized Suffix Tree

To build a suffix tree from two strings X and Y, make a new string XoY1
where $¢, $1 are both terminal symbols. Build a suffix tree for XoY1 .

Generalized suffix tree for { “"GACATA” “ATAGAC"} GACATASATAGACS;

A /%, /C \$; \GAC TA

$o /C [TA\GACS ATAS$o \$ ATAS$\$ | $o \GACS

5 9 2 12 0 10 4 8

ATAS, [$ $o \GACS o .
i 0 ' By convention, if a suffix includes part of both

strings, let's hide the portion after the first S.

| 11 3 7

ldentify Overlaps: Generalized Suffix Tree

Generalized suffix tree for { “"GACATA" “ATAGAC"} GACATASoATAGACS;

A $0 C $1 GAC TA

6 13
§o /C [TA\GACS ATAS(\$ ATAS\S | 50 \GACS |

5 9 > 12 0 10 4 :

ATASo 1 Bo \OAGST et query = GACATA (first string). From root,

. 0 ; ; follow path labeled with query.

Green edge implies length-3 suffix of second
ATAGAC string equals length-3 prefix of query

GACATA

ldentify Overlaps: Generalized Suffix Tree

Generalized suffix tree for { “"GACATA" “ATAGAC"} GACATASoATAGACS;

A $0 C $1 GAC TA

6 13
$o /C ITA\GACS ATAS$(\$; ATAS$(\$ | $o \GACS
5 9 2 12 0 10 4 8
ATASo b1 PoNGACS T | ot query = ATAGAC (second string). From
1 » v ; root, follow path labeled with query.
Green edge implies length-3 suffix of first
GACATA string equals length-3 prefix of query

ATAGAC

ldentify Overlaps: Generalized Suffix Tree

Generalized suffix tree for { “"GACATA" “ATAGAC"} GACATASoATAGACS;

A $0 C $1 GAC TA

6 13
$, /C [TA\GACS, ATAS$(\$ ATA$\$ | $o \GACS
5 9 2 12 0 10 4 8
i i 3 . (1) Build tree

(2) For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a prefix/suffix match

involving prefix of query string and suffix of
string ending in the separator.

ldentify Overlaps: Generalized Suffix Tree

o O

S0 /C ITA \GACS$, ATAS$(\$ ATAS$ NS $9 \GACS$
5 “ 9 2 12 0 10 4 8
ATAS$ [$9 NGACS$
| 1 N Say there are d strings of length n, total length

N = dn, and a = # string pairs that overlap

Assume for given string pair we report only the longest suffix/prefix match

Time to build generalized suffix tree: O(N)

(
... to walk down red paths: O(N)
.. to find & report overlaps (green): O(a)
Overall: O(N + a)

ldentify Overlaps: Dynamic Programming

What about approximate suffix/prefix matches?

X: CTCGGCCCTAGG

Y: GGCTCTAGGCCC

Use approximate matching recurrence relationship

Dli—1,§] +1
Dli, j| = min{ D;i,j —1]+1
Dli = 1,5 — 1]+ d(ali — 1], y[j — 1)

How do we search for prefix / suffix matches between X and Y?

Dynamic Programming

ldentify Overlaps

a.l.dol.da.4.)

o

J

7

LN
<
M
N

O
LN
<
mM
N

S5 [O

N
O
LN
<
mM
N

GGCTCTAGGCC

N
O
O
LN
<
M
N

5

o0
N
O
LN
<
M
N
i

Y:

(o))
o0
N
O
LN
<
mM
N
i

X: CTCGGCCCTAGG

G GCTCTAGGZ CTC COC

(% % Kool KA o ool (e ol o o] He o} Ne o} e o] Koo o)
=

How to adjust our matrix so suffix of

X aligns to prefix of Y?

Clo]1]2]3
Tloe|1]|2]|3
1

cClo|1l1]2]1
Clo|1]|]2]|2]|2
Tl1o]l1]|2]|3|2]2
Aleo]1]|]2]|3]|3|3]2
G|lo|o|1]2|3|4]|3]|2

First column gets 0s
First row gets oos
Backtrace from last row

G|o|Oo]|O|1|2|3|4]|3]|2

ldentify Overlaps: Dynamic Programming

Say there are d strings of length n, total length N=dn, and ais total
number of pairs with an overlap

overlaps to try: O(d?)
Size of each DP matrix: O(n2)

Overall: O(d2n?), or O(N2)
Contrast O(N2) with suffix tree: O(N + a), but where a is worst-case O(d?)

Real-world overlappers mix the two; index filters out vast majority of
non-overlapping pairs, dynamic programming used for remaining pairs

There are other approaches too!

Wajid, Bilal, and Erchin Serpedin. "Review of general algorithmic features for genome assemblers for next
generation sequencers." Genomics, proteomics & bioinformatics 10.2 (2012): 58-73.

Sohn, Jang-il, and Jin-Wu Nam. "The present and future of de novo whole-genome assembly." Briefings in
bioinformatics 19.1 (2018): 23-40.

String Assembly

Input: A set of strings S ={s1,s2, ..., sn} assumed
to be substrings of some underlying text T

Output: The ‘best’ approximation of T

1) Identify all possible overlaps

How do we store them?

Overlap graph

Each node is a string

[CTCGGCTCTAGCCCCTCATTTT j

Draw edge A -> B when suffix of A overlaps prefix of B

[CTCGGCTCTAGCCCCTCATTTT j

\

[GGCTCTAGGCCCTCATTTTTT j

Overlap graph

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

C

O0O0O0O0O0OOO0O

Which direction is this edge?

GGCGTCTATATCT
GGCGTCTATATCTCG

GGCGTCGATATCTAGG
CTAGGCCCTCAATTTTT
TATCTCGACTCTAGGCC

CTCTAGGCCCTCAATT

TCTATATCTCGGCTC
GGCTCTAGGCCCTCA

TTT
'AGG
TTTTT

CTCGGCTCTAGCCCC

CATTTT

TATCTCGACTCTAGGCCCTCA

Overlap graph

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

C

O0O0O0O0O0OOO0O

Which direction is this edge?

GGCGTCTATATCT
GGCGTCTATATCTCG

GGCGTCGATATCTAGG
CTAGGCCCTCAATTTTT
TATCTCGACTCTAGGCC

CTCTAGGCCCTCAATT

TCTATATCTCGGCTC
GGCTCTAGGCCCTCA

TTT
'AGG
TTTTT

CTCGGCTCTAGCCCC

CATTTT

TATCTCGACTCTAGGCCCTCA

Overlap graph

TCTATATCTCGGCTCTAGG

GGCGTCGATATCTAGG

O0O0O0O0O0OOO0O

Not every overlap is ‘meaningful’

GGCGTCTATATCT
GGCGTCTATATCT
GGCGTCGATATCT

CG
'AGG

CTAGGCCCTCAAT
TATCTCGACTCTAGGCC
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA

TTTT

Overlap graph

Nodes: all 6-mers from GTACGTACGAT
Edges: overlaps of length [=4

5

\}?I'ACGT

TACGTA

CGTACG

GTACGA) &
. TACGAD

String Assembly

Input: A set of strings S ={s1,s2, ..., sn} assumed
to be substrings of some underlying text T

Output: The ‘best’ approximation of T

1) Identify all possible overlaps /
Build an overlap graph
2) “Assemble” the best possible layout

Assemble best possible layout

CTAGGCLCTCAATTTTT CTAGGCCCTCAATTTTT
GGCGTCTATATCT

CTCTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTTT
TCTATATCTCGGCTCTAGG

CTCGGCTCTAGCCCCTCATTTT

GCTCTAGGEECTCATTITTT TATCTCGACTCTAGGCCCTCA

CTCGGCTCTAGCCCCTCATTTT

TATCTCGACTCTAGGCC
TATCTCGACTCTAGGCCCTCA
TCTATATCTCGGCTCTAGG
GGCGTCGATATCT
GGCGTCTATATCTCG
TATCTCGACTCTAGGCC GGCGTCGATATCT
GGCGTCTATATCTCG

GGCGTCTATATCT

Assemble best possible layout

Nodes: all 6-mers from GTACGTACGAT GTACGT
TACGTA

Edges: overlaps of length [>4 ACGTAC
CGTACG
5 GTACGA
. \}EI'ACGT TACGAT

TACGTA

CGTACG

GTACGA) &
. TACGAD

Assemble best possible layout

Nodes: all 6-mers from GTACGTACGAT GTACGT
TACGTA

Edges: overlaps of length [>4 ACGTAC
CGTACG
5 GTACGA

TACGAT

GTACGT

GTACGA) &
. TACGéE:)

Our layout is a path through our graph that touches all nodes

Assemble best possible layout

Given overlap graph, how can we find the “best” path through
this graph?

GTACGT

GTACGA) &
. TACGAD

One reasonable idea: shortest common superstring (SCS)

Shortest Common Superstring

Given set of strings S, find SCS(S): shortest string
containing the strings in S as substrings

S: BAA AAB BBA ABA ABB BBB AAA BAB

Concat(S): BAAAABBBAABAABBBBBAAABAB
: 24 !

SCS5(5): AAABBBABAA
| 10 i

Original example courtesy of Ben Langmead

Shortest Common Superstring

GTACGT

GTACGA) «
. TACGéE:)

>>> scs(['GTACGT', 'TACGTA', 'ACGTAC',
'CGTACG', 'GTACGA', 'TACGAT'])

"GTACGTACGAT"

Shortest Common Superstring

How can we solve SCS using graphs?

Original example courtesy of Ben Langmead

F——-Input strings —
AAA AAB ABB BBB BBA

AAA

ABB

AAB
2 2
1
1
2
1)
BBB 2 BBA

Shortest Common Superstring

How can we solve SCS using graphs?

Imagine a modified overlap graph ~ F——Input strings —
with edge weight = - (overlap) AAA AAB ABE BEB BBA

AAB
The SCS is a path that visits every 5 9
node once, minimizing total cost 4]\
AAA ~ - ABB
That's the Traveling Salesman 5

Problem. NP-Hard!

BBB 2 3IBBA

Original example courtesy of Ben Langmead

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAA

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAAB '\

Take into account overlap whenever possible

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAABA

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAABABB

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAA

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABAB '\

Concatenate full string when no overlap

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB «— superstring 1

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB «— superstring 1

order2: AAA AAB ABA BAB ABB BBB BAA BBA
AAABABBBAABBA <«— superstring 2
Try all possible orderings and pick shortest superstring
If S contains n strings, how many orderings are are possible?

n! (n factorial) orderings possible

Assemble best possible layout @

We want the “best” path through our graph:
SCS is not viable (NP-Hard)

GTACGT

GTACGA) &
. TACGéE:)

Maybe we don't need the optimal path...

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings —

AAA AAB ABB BBB BBA AAB

AAA 1 ~(ABB

BBB 2 3BBA

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings — AAB
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA

Pick the highest 1/ VAN

weight overlap AAA ; > ABB

BBB 2 3BBA

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

Merge to create a

new node AAAB > ABB

BBB 2

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

Pick the highest AAAB > ABB

weight overlap

BBB 2

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

Merge to create a
new node

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA

AAABB

BBBA

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-/|nput strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA

AAABBBA AAABBBA

That's the SCS

Is Greedy-SCS optimal?

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

AAA AA/AB ABB BBA BBB
\/
AAAB ABB BBA BBB

Shortest Common Superstring: Greedy

AAA AA{AB ABB BBA BBB
\/
AAAB ABB BBA BBB
\ A4
AAAB ABBA BBB

Shortest Common Superstring: Greedy

AAA ‘A/AB ABB BBA BBB
\/
AAAB ABB EBA BBB
\
AAAB ABBA BBB
\ 24
AAABBA BBB

Shortest Common Superstring: Greedy

AAA AA{AB ABB BBA BBB

\
AAAB ABB EBA BBB

\/

AAAB ABBA BBB

\ 24
AAABBA BBB

\ '4
AAABBABBB <«— superstring, length=9

Shortest Common Superstring: Greedy

AAA AA{AB ABB BBA BBB
\/
AAAB ABB BBA BBB
\ A4
AAAB ABBA BBB
\ 24

AAABBA BBB

\ 4
AAABBABBB «— superstring, length=9

AAABBBA <«— superstring, length=7

Greedy answer isn't necessarily optimal

Shortest Common Superstring: Greedy

Greedy-SCS assembling all substrings of length k = 6 from:
a_long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a _long long 1 ong ti ong lo long t

ng time long ti g long ng lon a_long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

long lon g long time a_long

long long time a_long

a_long long time

What happened?

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS assembling all substrings of length k = 6 from:
a_long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a_long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

long lon g long time a_long

long long time a_long

a_long long time

t

Foiled by repeat!

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Same example, but increased the substring length, k, from 6 to 8

long lon ng long long lo g long t ong long g long 1 ong time a _long 1 long ti long tim
long time long lon ng long long lo g long t ong long g long 1 a long 1 long ti
_long time long lon ng long long lo g long t ong long g long 1 a long 1

_long time a_long lo long lon ng long g long t ong long g long 1

~long time ong long a long lo long lon g long t g long 1

g long time ong long a long lo long lon g long 1

g long time ong long a _long lon g long 1

g long time ong long 1 a long lon

g long time a_long long 1

a_long long long time

a_long long long time

Got the whole thing: a_long long long time

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure
out there are 3 copies of 1long?

a_long long long time

g long 1

One length-8 substring spans all three 1longs

String Repeats

Basic principle: repeats foil assembly

SCS can't handle repeats at all (the‘shortest’is not the best)!

More generally, algorithms that aren’t very careful
about repeats may collapse them

a_long long long time
lcollapse

a_long long time

Fun trivia: This is particularly bad for genomics. The
human genome is ~50% repetitive!

String Repeats

Basic principle: repeats foil assembly

Another example using Greedy-SCS:

Input: swinging_and_the_ringing of_the_bells bells bells bells

Lk Output:

3,7 swinging and _the ringing of the bells bells

3,13 swinging and _the ringing of the bells bells bells

3,19 swinging and the ringing of the bells bells bells b
3,25 swinging and the ringing of the bells bells bells bells

—_—
longer and longer substrings

Original example courtesy of Ben Langmead ‘reach’further into repeat

String Repeats

Portion of overlap graph involving repeat family A

A

L R1
Stretches of [,

: oy R> As are longer than
toxt T L Unique W

3 readlength

> y)

Lots of overlaps
among A reads

L —\—— .+ I R
L SN O /_ Rs
(TTTTT] [TTTTT]

Strings —///‘ \TA— R;
Ly mm~ EEEEEN s

Even if we avoid collapsing copies of A, we can’t know which paths
in correspond to which paths out

Real-world Assembly

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly

|
[Overlap j [Error correction j
[La:/out j [de Bruij+n graph j
v ¥

[Consensus j [Refine j
¥ ¥

