
Department of Computer Science

String Algorithms and Data Structures

April 18, 2022

String Graph Assembly

CS 199-225
Brad Solomon

Assignment 11: a_edist due April 18 11:59 PM!

Last assignment!

Human Genome Project: 1990-2003

String Assembly

String Assembly

Whole-genome “shotgun” sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Then fragments it:

“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun

String Assembly

Reconstruct this
From
these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

String Assembly

Reconstruct this
From
these

???????????????????????????????????

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

String Assembly

String Assembly

ATGGTTAGAATTAAACCCGG
TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC
TACGTAGAGGTCATTAGCC

….

TACGTAGAGGTCATTAGCCG
TGCTAATAAACCUAGTGATG

ATGGTTAGAATTAAACCTGGATCTGCTAATAAACCUAGTGATGATGCG
ATAGCACAGGTAGATCCAGTTACGTAGAGGTCATTAGCCGTATTGCTA
ATAAACCTAGTGATGATTCGATAGCGTAGAGGTCATTAGCCTTGTGCT
AATAACAGGTAGATCCGTATACGTAGAGGTCATTACCAGAGGTCATTA

GTTGTGCTAATAAACCTAGTGTAGATGAAGAGGTCATTAGATCTGCTAA

Input: A set of strings S = {s1, s2, …, sn} assumed
to be substrings of some underlying text T

Output: The ‘best’ approximation of T

1) Identify all possible overlaps

2) “Assemble” the best possible layout

String Assembly

3) Reconstruct T based on consensus

Length-l Overlap: Suffix of X of length ≥l matches prefix of Y

Naive: look in X for occurrences of Y’s length-l prefix. Extend
matches to the right to confirm if the suffix of X matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say l = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in X

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to right; confirm a length-6
prefix of Y matches a suffix of X

Identify Overlaps

Length-l Overlap: Suffix of X of length ≥l matches prefix of Y

Naive: look in X for occurrences of Y’s length-l prefix. Extend
matches to the right to confirm if the suffix of X matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say l = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in X

Found it

CTCTAGGCC

 TAGGCCCTC

X:

Y:

Extend to right; confirm a length-6
prefix of Y matches a suffix of X

Identify Overlaps

Identify Overlaps

Length-l Overlap: Suffix of X of length ≥l matches prefix of Y

CTCTAGGCC

TAGGCCCTCCCCTCTCTA

Naive: look in X for occurrences of Y’s length-l prefix. Extend
matches to the right to confirm if the suffix of X matches.

For three strings, how many overlaps must be calculated?

In bulk, there are better ways to do this…

Identify Overlaps: Generalized Suffix Tree
To build a suffix tree from two strings X and Y, make a new string X$0Y$1
where $0, $1 are both terminal symbols. Build a suffix tree for X$0Y$1 .

Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

By convention, if a suffix includes part of both
strings, let's hide the portion after the first $.

Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = GACATA (first string). From root,
follow path labeled with query.

Green edge implies length-3 suffix of second
string equals length-3 prefix of queryATAGAC

 |||
 GACATA

Identify Overlaps: Generalized Suffix Tree

Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = ATAGAC (second string). From
root, follow path labeled with query.

Green edge implies length-3 suffix of first
string equals length-3 prefix of queryGACATA

 |||
 ATAGAC

Identify Overlaps: Generalized Suffix Tree

Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a prefix/suffix match
involving prefix of query string and suffix of
string ending in the separator.

Strategy:

(1) Build tree
(2)

Identify Overlaps: Generalized Suffix Tree

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Say there are d strings of length n, total length
N = dn, and a = # string pairs that overlap

Time to build generalized suffix tree: O(N)

... to walk down red paths: O(N)

... to find & report overlaps (green): O(a)

Overall: O(N + a)

Assume for given string pair we report only the longest suffix/prefix match

Identify Overlaps: Generalized Suffix Tree

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

Identify Overlaps: Dynamic Programming

What about approximate suffix/prefix matches?

How do we search for prefix / suffix matches between X and Y?

Use approximate matching recurrence relationship

D[i, j] = min

8
<

:

D[i� 1, j] + 1
D[i, j � 1] + 1
D[i� 1, j � 1] + �(x[i� 1], y[j � 1])

- G G C T C T A G G C C C
-
C
T
C
G
G
C
C
C
T
A
G
G

X

Y

How to adjust our matrix so suffix of
X aligns to prefix of Y? 0

0
0
0
0
0
0
0
0
0
0
0
0

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 2 3 4 5 6 7 8 9 10 11
0 1 2 2 3 4 5 6 7 8 9 10
0 0 1 2 2 3 4 5 6 7 8 9
1 1 0 1 2 3 4 5 6 7 8 9
1 2 1 1 1 2 3 4 5 6 7 8
1 2 2 2 1 2 3 4 5 6 6 7
1 2 3 2 2 1 2 3 4 5 6 7
1 2 3 3 3 2 1 2 3 4 5 6
0 1 2 3 4 3 2 1 2 3 4 5
0 0 1 2 3 4 3 2 1 2 3 4

Backtrace from last row

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

Identify Overlaps: Dynamic Programming

First row gets ∞s
(must be a prefix of Y)

First column gets 0s
(any suffix of X is possible)

overlaps to try: O(d2)

Size of each DP matrix: O(n2)

Overall: O(d2n2), or O(N2)

Say there are d strings of length n, total length N = dn, and a is total
number of pairs with an overlap

Contrast O(N2) with suffix tree: O(N + a), but where a is worst-case O(d2)

Real-world overlappers mix the two; index filters out vast majority of
non-overlapping pairs, dynamic programming used for remaining pairs

Identify Overlaps: Dynamic Programming

There are other approaches too!

Wajid, Bilal, and Erchin Serpedin. "Review of general algorithmic features for genome assemblers for next
generation sequencers." Genomics, proteomics & bioinformatics 10.2 (2012): 58-73.

Sohn, Jang-il, and Jin-Wu Nam. "The present and future of de novo whole-genome assembly." Briefings in
bioinformatics 19.1 (2018): 23-40.

Output: The ‘best’ approximation of T

1) Identify all possible overlaps

2) “Assemble” the best possible layout

String Assembly

3) Reconstruct T based on consensus

How do we store them?

Input: A set of strings S = {s1, s2, …, sn} assumed
to be substrings of some underlying text T

Overlap graph

Each node is a string

Draw edge A -> B when suffix of A overlaps prefix of B

CTCGGCTCTAGCCCCTCATTTT

CTCGGCTCTAGCCCCTCATTTT

GGCTCTAGGCCCTCATTTTTT

GGCGTCTATATCTCG
GGCGTCTATATCT

GGCGTCGATATCTAGG
CTAGGCCCTCAATTTTT
TATCTCGACTCTAGGCC
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

Overlap graph

Which direction is this edge?

B

A

GGCGTCTATATCTCG
GGCGTCTATATCT

CTAGGCCCTCAATTTTT
TATCTCGACTCTAGGCC
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

Overlap graph

Which direction is this edge?

GGCGTCGATATCTAGG

B

A

GGCGTCTATATCTCG
GGCGTCTATATCT

CTAGGCCCTCAATTTTT
TATCTCGACTCTAGGCC
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA

 TCTATATCTCGGCTCTAGG
 ||
 GGCGTCGATATCTAGG

Overlap graph

GGCGTCGATATCTAGG

Not every overlap is ‘meaningful’

Overlap graph

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length l ≥4

Output: The ‘best’ approximation of T

1) Identify all possible overlaps

2) “Assemble” the best possible layout

String Assembly

3) Reconstruct T based on consensus

Build an overlap graph

Input: A set of strings S = {s1, s2, …, sn} assumed
to be substrings of some underlying text T

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assemble best possible layout

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length l ≥4

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

GTACGT
 TACGTA
 ACGTAC
 CGTACG
 GTACGA
 TACGAT

Assemble best possible layout

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Our layout is a path through our graph that touches all nodes

GTACGT
 TACGTA
 ACGTAC
 CGTACG
 GTACGA
 TACGAT

Assemble best possible layout

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length l ≥4

Given overlap graph, how can we find the “best” path through
this graph?

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

One reasonable idea: shortest common superstring (SCS)

Assemble best possible layout

Given set of strings S, find SCS(S): shortest string
containing the strings in S as substrings

BAA AAB BBA ABA ABB BBB AAA BABS:

BAAAABBBAABAABBBBBAAABABConcat(S):
24

SCS(S): AAABBBABAA
10

Shortest Common Superstring

Original example courtesy of Ben Langmead

>>> scs(['GTACGT', 'TACGTA', 'ACGTAC',
 'CGTACG', 'GTACGA', 'TACGAT'])
'GTACGTACGAT'

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Shortest Common Superstring

 AAA AAB ABB BBB BBA
Input strings

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Shortest Common Superstring

Original example courtesy of Ben Langmead

How can we solve SCS using graphs?

 AAA AAB ABB BBB BBA
Input strings

AAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -1

-1
-2

Shortest Common Superstring

How can we solve SCS using graphs?

Imagine a modified overlap graph
with edge weight = - (overlap)

Original example courtesy of Ben Langmead

The SCS is a path that visits every
node once, minimizing total cost

That’s the Traveling Salesman
Problem. NP-Hard!

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAA

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAAB
Take into account overlap whenever possible

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABA

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABB

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAA

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABAB

Concatenate full string when no overlap

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB superstring 1

Shortest Common Superstring: Exhaustive

Pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

Try all possible orderings and pick shortest superstring

n ! (n factorial) orderings possible

If S contains n strings, how many orderings are are possible?

Pick order for strings in S and construct superstring

Shortest Common Superstring: Exhaustive

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Maybe we don’t need the optimal path…

We want the “best” path through our graph:

SCS is not viable (NP-Hard)

Assemble best possible layout

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

 AAA AAB ABB BBB BBA
Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Shortest Common Superstring: Greedy

Original example courtesy of Ben Langmead

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA

Pick the highest
weight overlap

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Merge to create a
new node

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Pick the highest
weight overlap

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Merge to create a
new node

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

BBBA

AAABB

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA

1

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA
 AAABBBA

That’s the SCS

AAABBBA

Is Greedy-SCS optimal?

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

Shortest Common Superstring: Greedy

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

Shortest Common Superstring: Greedy

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

Shortest Common Superstring: Greedy

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

Shortest Common Superstring: Greedy

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

AAABBBA superstring, length=7

Greedy answer isn't necessarily optimal

Shortest Common Superstring: Greedy

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long
 long_long_time a_long
 a_long_long_time

What happened?

Original example courtesy of Ben Langmead

Greedy-SCS assembling all substrings of length k = 6 from:
a_long_long_long_time. l = 3.

Shortest Common Superstring: Greedy

Greedy-SCS assembling all substrings of length k = 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long
 long_long_time a_long
 a_long_long_time

Foiled by repeat!

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Same example, but increased the substring length, k, from 6 to 8

 long_lon ng_long_ _long_lo g_long_t ong_long g_long_l ong_time a_long_l _long_ti long_tim
 long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l _long_ti
 _long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l
 _long_time a_long_lo long_lon ng_long_ g_long_t ong_long g_long_l
 _long_time ong_long_ a_long_lo long_lon g_long_t g_long_l
 g_long_time ong_long_ a_long_lo long_lon g_long_l
 g_long_time ong_long_ a_long_lon g_long_l
 g_long_time ong_long_l a_long_lon
 g_long_time a_long_long_l
 a_long_long_long_time
 a_long_long_long_time

Got the whole thing: a_long_long_long_time

Original example courtesy of Ben Langmead

Shortest Common Superstring: Greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure
out there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l

Shortest Common Superstring: Greedy

Basic principle: repeats foil assembly

SCS can’t handle repeats at all (the ‘shortest’ is not the best)!

More generally, algorithms that aren’t very careful
about repeats may collapse them

a_long_long_long_time

a_long_long_time

collapse

String Repeats

Fun trivia: This is particularly bad for genomics. The
human genome is ~50% repetitive!

Basic principle: repeats foil assembly

Another example using Greedy-SCS:

swinging_and_the_ringing_of_the_bells_bells_bells_bells

Original example courtesy of Ben Langmead

swinging_and_the_ringing_of_the_bells_bells

swinging_and_the_ringing_of_the_bells_bells_bells

swinging_and_the_ringing_of_the_bells_bells_bells_b

swinging_and_the_ringing_of_the_bells_bells_bells_bells

l, k

Input:

3, 7

3, 13

3, 19

3, 25

Output:

longer and longer substrings
‘reach’ further into repeat

String Repeats

Portion of overlap graph involving repeat family A

As are longer than
read length

A

Lots of overlaps
among A reads

Even if we avoid collapsing copies of A, we can’t know which paths
in correspond to which paths out

L1

L2

L3

L4

R1

R2

R3

R4

L1

L2

L3

L4

R1

R2

R3

R4

Stretches of
text T

Strings

RepetitiveUnique Unique

String Repeats

Real-world Assembly

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Refine

