String Algorithms and Data Structures
Approximate Pattern Matching

CS 199-225
Brad Solomon

April 11, 2022
A_fmi reflection

All students responded 1-2 hours for time

The comments in the assignment / the breakdown of functions seemed reasonable
A_pigeon due today!
Last assignment today!

Remember only best 10 assignments are counted towards final grade

Next few lectures will be bonus material only
Approximate Pattern Matching

Input: A text T, a pattern P, and a distance d

Output: All positions in T where P has at most d mismatches or edits

P: word
T: There would have been a time for such a word

Alignment 1: word
Alignment 2: word

Not a match!

Distance 2 match!

Match!

Distance 0 match!
Hamming Distance

The number of **substitutions** required to turn one string into another

\[T: \text{GGAAAAAGAGGTAGCGGC} \text{GTTTAAACAGTAG} \]
\[P: \text{GTAAACGGCG} \]

Mismatch
(Substitution)
Edit Distance

Score = 248 bits (129), Expect = 1e-63
Identities = 213/263 (80%), Gaps = 34/263 (12%)
Strand = Plus / Plus

Query: 161 atatcaccacgtcaaaggtgactcaactcca---ccactccactttttgttcagataatgc 217

Sbjct: 481 atatcaccacgtcaaaggtgactcaact-tattgatagtctttatgcttcagataatgc 539

Query: 218 ccgatgatcatgtcatgcagctccaccgattttgagaaacgacaggcacctcgtcccagc 277

Sbjct: 540 ccgatgacttttgtcatgcagctccaccgatttttgc-----------ttccgtcccagc 586

Query: 278 c-gtgcc--aggtgtgctgcctcagattttatgctgaatcctcgtgcgtattatcgc 334

Sbjct: 587 caatgacgta-gtgctgcctcagattttatgctgaatcctcgtgcgtattatcgc 645

Query: 335 ttgctgattacgtgcagctttcccttacaggagggg----------ccagccatccggtc 382

Sbjct: 646 ttgctgattacgtgcagctttcccttacaggaggggattcatacaggcggccagccatccggtc 705

Query: 383 ctccatatc-accacgtcaaaagg 404

Sbjct: 706 atccatatcaaccacgtcaaaagg 728

Substitution

Deletion

Insertion
Approximate Pattern Matching

Find an exact match partition and validate the overall alignment
Learning Objectives

Review approximate pattern matching

Formalize edit distance storage as an ‘edit string’

Discuss strategies for efficient APM with edits

Introduce dynamic programming
Edit Distance

Imagine edits are introduced by an optimal editor working left-to-right:

Edit string summarizes how editor turns x into y:

$$x: \text{GCGTATGCGGCTAACGC}$$
$$y: \text{GCTATGCGGCTATACGC}$$

Operations:

- $M =$ match,
- $R =$ replace (substitute),
- $I =$ insert into x,
- $D =$ delete from x

Reminder: this is D, not I, because we have to delete a character from x to make it more like y.
Optimal edit string for $D[i, j]$ is built by extending a shorter optimal string by 1 operation. 3 options:

- Append D to transcript for $D[i-1, j]$
- Append I to transcript for $D[i, j-1]$
- Append M or R to transcript for $D[i-1, j-1]$

We choose based on whichever option has the fewest edits
Edit Distance

X: GTTTAA Y: GGTTTA

D[5, 6]

D[5, 5]

D[6, 5]

D[6, 6]
Edit Distance

X: GTTTAA Y: GGTTTA

D[6, 6]
GTTTTA
GGTTTA

D[5, 6]
GTTTA
GGTTTA

D[5, 5]
GTTTA
GGTTT

D[6, 5]
GTTTAA
GGTTT

A

A

A

A

-
Edit Distance

X: GTTTAA Y: GGTTTA

D[5, 6]

D[5, 5]

D[6, 5]

MIMMMMM

MRMMR

MRMMRD
Edit Distance

X: GTTTAA Y: GGTTTA

MIMMMM

D[5, 6]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D[6, 6]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MRRMR

D[5, 5]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D[6, 6]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>T</th>
<th>T</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MRRMRD

D[6, 5]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D[6, 6]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edit Distance

X: GTTTAA Y: GGTTTA

\[D[5, 6] \]

\begin{array}{ll}
MIMMMMN & MIMMMMD \\
G - T T T T A & G - T T T T A A \\
G G T T T T A & G G T T T T A - \\
\end{array}

\[D[6, 6]^1 \]

\[D[5, 5] \]

\begin{array}{ll}
MRMMRM & MRMMRM \\
G T T T T A & G T T T T A A \\
G G T T T T A & G G T T T T A \\
\end{array}

\[D[6, 6]^2 \]

\[D[6, 5] \]

\begin{array}{ll}
MRMMRD & MRMMRDI \\
G T T T T A A & G T T T T A A - \\
G G T T T T - & G G T T T T - A \\
\end{array}

\[D[6, 6]^3 \]
Edit Distance

X: ACCT Y: AGCC

D[3, 4]

\[
\begin{array}{ccc}
A & - & C & C \\
A & G & C & C
\end{array}
\]

D[3, 3]

\[
\begin{array}{ccc}
A & C & C \\
A & G & C
\end{array}
\]

D[4, 3]

\[
\begin{array}{cccc}
A & C & C & T \\
A & G & C & -
\end{array}
\]

MIMM

D[4,4] extends one of these options

MRM

MRMD

D[4, 4]
Edit Distance

X: ACCT Y: AGCC

D[3, 4]

\[
\begin{array}{cccc}
A & C & C & T \\
A & G & C & C \\
\end{array}
\]

D[3, 3]

\[
\begin{array}{cccc}
A & C & C & T \\
A & G & C & C \\
\end{array}
\]

D[4, 3]

\[
\begin{array}{cccc}
A & C & C & T \\
A & G & C & - \\
\end{array}
\]

D[4, 4] extends one of these options

D[4, 4]

\[
\begin{array}{cccc}
A & C & C & T \\
A & G & C & C \\
\end{array}
\]
Edit Distance

We can store D as a 2D matrix:

Let $D[0, j] = j$, and let $D[i, 0] = i$
Edit Distance

We can store D as a 2D matrix:

Let $D[0, j] = j$, and let $D[i, 0] = i$

Otherwise, let $D[i, j] = \min$

$$\begin{cases} D[i - 1, j] + 1 \\ D[i, j - 1] + 1 \\ D[i - 1, j - 1] + \delta(x[i - 1], y[j - 1]) \end{cases}$$

$\delta(a, b)$ is 0 if $a = b$, 1 otherwise
Edit Distance

\textbf{editRecursive}(“ABC”, “BBC”)

(“ABC”, “BB”) ("AB", "BB") ("AB", “BBC”)

(“ABC”, “B”) ("AB", "B") ("AB", “BB”)

(only part of recursion tree shown)
Edit Distance

\[
\text{editRecursive}(\text{“ABC”}, \text{“BBC”})
\]

\[
(\text{“ABC”}, \text{“BB”}) (\text{“AB”}, \text{“BB”}) (\text{“AB”}, \text{“BBC”})
\]

\[
(\text{“ABC”}, \text{“B”}) (\text{“AB”}, \text{“B”}) (\text{“AB”}, \text{“BB”})
\]

\begin{itemize}
 \item \text{editRecursive}(\text{“Shakespeare”}, \text{“shake spear”})
 \item Calculate (\text{“Shake”}, \text{“shake”}) 8989 times
\end{itemize}

How can we address this problem?
Memoization: Top-down

Dynamic Programming: Bottom-up

Both: Solve individual sub-problems once
Edit Distance: dynamic programming

Let $n = |x|, m = |y|$

D: $(n+1) \times (m+1)$ matrix

$D[i, j] = \text{edit distance b/t length-}i\ \text{prefix of } x \text{ and length-}j\ \text{prefix of } y$
Edit Distance: dynamic programming

Let $D[0, j] = j$, and let $D[i, 0] = i$

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

What is A?

$D[i, j] = \text{edit distance b/t length-}i\text{ prefix of } x \text{ and length-}j\text{ prefix of } y$
Edit Distance: dynamic programming

Let $D[0, j] = j$, and let $D[i, 0] = i$

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

What is A?
Edit Distance: dynamic programming

Let $D[0, j] = j$, and let $D[i, 0] = i$
Edit Distance: dynamic programming

Let $D[0, j] = j$, and let $D[i, 0] = i$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Edit Distance: dynamic programming

Let $D[0, j] = j$, and let $D[i, 0] = i$

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Edit Distance: dynamic programming

Let $D[0, j] = j$, and let $D[i, 0] = i$

D is one row / column larger than x / y!
Edit Distance: dynamic programming

Cell depends upon its upper, left, and upper-left neighbors

\[
D[i, j] = \min \begin{cases}
D[i-1, j] + 1 \\
D[i, j-1] + 1 \\
D[i-1, j-1] + \delta(x[i-1], y[j-1])
\end{cases}
\]
Edit Distance: dynamic programming

\[D[i, j] = \min \begin{cases} D[i - 1, j] + 1 \\ D[i, j - 1] + 1 \\ D[i - 1, j - 1] + \delta(x[i - 1], y[j - 1]) \end{cases} \]

Fill remaining cells from top row to bottom and from left to right.

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

\(D[i, j] \) equals the minimum of the three possible ways to reach it from the previous cells in the table.
Edit Distance: dynamic programming

\[D[i, j] = \min \begin{cases}
D[i-1, j] + 1 \\
D[i, j-1] + 1 \\
D[i-1, j-1] + \delta(x[i-1], y[j-1])
\end{cases} \]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

- D[i-1, j] = 'G',
- y[j-1] = 'G',
- so delt = 0

\[
D[i, j] = \min(D[i-1, j] + 1, \\
D[i, j-1] + 1, \\
D[i-1, j-1] + \delta(x[i-1], y[j-1])) \\
= \min(1 + 1, 1 + 1, 0 + 0) \\
= 0
\]
Edit Distance: dynamic programming

\[D[i, j] = \min \left\{ \begin{array}{l}
D[i - 1, j] + 1 \\
D[i, j - 1] + 1 \\
D[i - 1, j - 1] + \delta(x[i - 1], y[j - 1])
\end{array} \right. \]

What goes here in \(i=1, j=2 \)?

\(x[i-1] = 'G', \)
\(y[j-1] = 'C', \)
so \(\delta = 1 \)

\[D[i, j] = \min(D[i-1, j] + 1, D[i, j-1] + 1, D[i-1, j-1] + \delta) \]
\[= \min(2 + 1, 0 + 1, 1 + 1) \]
\[= 1 \]
Edit Distance: dynamic programming

The Edit Distance problem can be solved using dynamic programming. The Edit Distance matrix $D[i, j]$ is defined as:

$$D[i, j] = \min \begin{cases}
D[i-1, j] + 1 \\
D[i, j-1] + 1 \\
D[i-1, j-1] + \delta(x[i], y[j])
\end{cases}$$

Where $\delta(x, y)$ is the cost of changing a character to another character. In the case of DNA sequences, this is typically 1 for a substitution, 2 for an insertion, and 2 for a deletion.

Example

Consider the DNA sequences `GATC` and `GCAT`. We can construct the Edit Distance matrix as follows:

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>?</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

In this example, the Edit Distance between `GATC` and `GCAT` is 2, which is the value in the cell at position $i=4, j=7$.
Edit Distance: dynamic programming

\[
D[i, j] = \min \left\{ \begin{array}{c} D[i - 1, j] + 1 \\ D[i, j - 1] + 1 \\ D[i - 1, j - 1] + \delta(x[i - 1], y[j - 1]) \end{array} \right.
\]

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What goes here in \(i=4, j=7\)?

\(x[i-1] = 'T'\),
\(y[j-1] = 'C'\),
so \(\delta = 1\)

\[D[i, j] = \min(D[i-1, j]+1, D[i, j-1]+1, D[i-1, j-1]+\delta)\]

\[= \min(4 + 1, 3 + 1, 3 + 1)\]

\[= 4\]
Edit Distance: dynamic programming

$$D[i, j] = \min \left\{ \begin{array}{l}
D[i-1, j] + 1 \\
D[i, j-1] + 1 \\
D[i-1, j-1] + \delta(x[i-1], y[j-1])
\end{array} \right. $$

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fill remaining cells from top row to bottom and from left to right.

Edit distance for x, y
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>ϵ</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>A</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ϵ</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ϵ</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
eMatrix buildEditMatrix(X, Y)

Input:

string X: Input string X (edits with respect to X)

string Y: Input string Y (edits turn X into Y)

Output:

eMatrix: vector<vector<int>> storing all optimal edit distances
Edit Distance: dynamic programming

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

etc
Edit Distance: dynamic programming

Any strategy that fills in order works:
Assignment 11: a_edist

Learning Objective:

Use dynamic programming to build an edit distance matrix

Construct an optimal edit string from the edit matrix

Consider: Does substitution, insertion, and deletion need to have the same ‘weight’ as a penalty? How could you modify the code to take a user-specified input for each?
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Edit distance for x, y
But where and what is the edit?
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ↔ or ↑↓) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Q: How did I get here?
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ← or ↑) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$D[2, 4] = \underline{}$
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ← or ↑) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$D[3, 3] = \underline{\text{__________}}$

Q: How did I get here?
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ⇐ or ↑\downarrow) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$D[2, 3] = \underline{1}$

Q: How did I get here?
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ⇐ or ↑ 같습니다) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$D[1, 3] = \underline{}$

$D[1, 2] = \underline{}$

$D[2, 2] = \underline{}$

Q: How did I get here?
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ← or ↑↓) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- $D[1, 3] = 2 + 1$
- $D[1, 2] = 1 + 0$
- $D[2, 2] = 0 + 1$

Q: How did I get here?
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ← or ↑) gave the minimum?

\[
\begin{array}{c|cccc}
 & \epsilon & C & A & T \\
\hline
\epsilon & 0 & 1 & 2 & 3 \\
C & 1 & 0 & 1 & 2 \\
A & 2 & 1 & 0 & 1 \\
T & 3 & 2 & 1 & 1 \\
\end{array}
\]
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript.

At each step, ask: which neighbor (PropertyChangedEventArgs, PropertyChangedEventArgs or PropertyChangedEventArgs) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Path 1:

```
C - A T
|   |
C A A T
```
Edit Distance

Traceback corresponds to an optimal alignment / edit transcript

At each step, ask: which neighbor (↖, ← or ↑) gave the minimum?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Path 2

```
MIMM
```

```
MMIM
```

```
C - A T
|
```

```
C A - T
|
```

```
C A A T
```
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>T</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Q: How did I get here?
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\[D[11, \ 12] = 3 + 1 \]

\[D[11, \ 11] = 2 + 0 \]

\[D[12, \ 11] = 3 + 1 \]

Q: How did I get here?

A: From here
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Q: How did I get here?
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\[D[10, 11] = 3 + 1 \]

\[D[10, 10] = 2 + 0 \]

\[D[11, 10] = 3 + 1 \]

A: From here

Q: How did I get here?
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Q: How did I get here?
Edit Distance

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\[
D[9, 10] = 3 + 1 \\
D[9, 9] = 2 + 0 \\
D[10, 9] = 3 + 1
\]

A: From here

Q: How did I get here?
Edit Distance

Alignment:
```
GC GTATG - CACGC
||  ||  ||  ||  ||  
GC - TATGC CCCACGC
```

```
MMDMMMMMMMMMM
```
Edit Distance

Dynamic Programming fills our table with optimal distances

Traceback identifies the optimal *edit string* to convert X to Y

What is our efficiency? ($|X| = m$, $|Y| = n$)
Edit Distance

Dynamic Programming fills our table with optimal distances

Traceback identifies the optimal *edit string* to convert *X* to *Y*

What is our efficiency? (|X| = \(m\), |Y| = \(n\))

Table filling: Filling \((m + 1)\) \((n + 1)\) cells, each requiring constant work, so \(O(mn)\)

Traceback: Each step goes \(<\), \(\Leftarrow\) or \(\Uparrow\). Worst case: traceback never moves diagonally, requiring \(m\) \(\Uparrow\)'s and \(n\) \(\Leftarrow\)'s, so \(O(m + n)\)
string buildEditString(X, Y)

Input:
- **string X:** Input string X (edits with respect to X)
- **string Y:** Input string Y (edits turn X into Y)

Output:
- **string:** An optimal edit string produced by the matrix

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

On tie: prioritize diagonal, then vertical, then horizontal
Approximate Pattern Matching

“Seed and extend” works for edit distance too!

Use DP in vicinity of hits to find full alignments

Distance Matrix
Bonus Slide

$s(a, b)$

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

$s(a, b)$

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>G</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Substrings of x ending at i
Substrings of y ending at j
$V[i, j]$

x

y

... and much more!