April 19 – Graph Traversals & MST
Brad Solomon
Mid-Project Check-ins this week!

Discuss:

Current Progress (First deliverable done?)

Future Progress (What do you have left to do?)

Group Cohesion (Any issues or concerns?)
Learning Objectives

• Review BFS and discuss pseudo-code for DFS on graphs

• Analyze and contrast BFS/DFS algorithms

• Introduce Minimum Spanning Tree (MST) problem
Traversals: BFS

Adjacent Edges

<table>
<thead>
<tr>
<th>v</th>
<th>d</th>
<th>P</th>
<th>Adjacent Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-</td>
<td>B C D</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>A</td>
<td>A C E</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>A</td>
<td>A B D E F</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>A</td>
<td>A C F H</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>C</td>
<td>B C G</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>C</td>
<td>C D G</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>E</td>
<td>E F H</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>D</td>
<td>D G</td>
</tr>
</tbody>
</table>

Traversal Order: G H F E D C B A
BFS Observations

Obs. 1: BFS can be used to count components.

Obs. 2: BFS can be used to detect cycles.

Obs. 3: In BFS, d provides the shortest distance to every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, d, by more than 1:

$$|d(u) - d(v)| \leq 1$$
Traversal: DFS
Traversal: DFS

Discovery Edge

Back Edge
BFS(G):
Input: Graph, G
Output: A labeling of the edges on G as discovery and cross edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)
while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
DFS(G):

Input: Graph, G
Output: A labeling of the edges on G as discovery and back edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 DFS(G, v)

DFS(G, v):

 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)
 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 DFS(G, w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, BACK)
DFS Observations

Obs. 1: DFS can be used to count components.

Obs. 2: DFS can be used to detect cycles.

Obs. 3: In DFS, d provides no clear meaning.
DFS vs BFS

<table>
<thead>
<tr>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros:</td>
<td>Pros:</td>
</tr>
<tr>
<td>Cons:</td>
<td>Cons:</td>
</tr>
</tbody>
</table>
Minimum Spanning Tree Algorithms

Input: Connected, undirected graph G with edge weights (unconstrained, but must be additive)

Output: A graph G' with the following properties:
- G' is a spanning graph of G
- G' is a tree (connected, acyclic)
- G' has a minimal total weight among all spanning trees
Kruskal’s Algorithm

KruskalMST(G):
1. DisjointSets forest
2. foreach (Vertex v : G):
 3. forest.makeSet(v)
4. PriorityQueue Q // min edge weight
5. foreach (Edge e : G):
 6. Q.insert(e)
7. Graph T = (V, {})
8. while |T.edges()| < n-1:
 9. Vertex (u, v) = Q.removeMin()
10. if forest.find(u) != forest.find(v):
11. T.addEdge(u, v)
12. forest.union(forest.find(u),
13. forest.find(v))
14. return T
Kruskal’s Algorithm

KruskalMST(G):
DisjointSets forest

foreach (Vertex v : G):
forest.makeSet(v)

PriorityQueue Q // min edge weight

foreach (Edge e : G):
Q.insert(e)

Graph T = (V, {})

while |T.edges()| < n-1:
Vertex (u, v) = Q.removeMin()
if forest.find(u) != forest.find(v):
T.addEdge(u, v)
forest.union(forest.find(u),
forest.find(v))

return T

Priority Queue:
Heap Sorted Array
Building (Line 6-8)
Each removeMin (Line 13)
Kruskal’s Algorithm

Priority Queue:

<table>
<thead>
<tr>
<th>Total Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
</tr>
<tr>
<td>Sorted Array</td>
</tr>
</tbody>
</table>

Priority Queue:

1. **Heap**
2. **Sorted Array**

```python
KruskalMST(G):

1. DisjointSets forest
2. foreach (Vertex v : G):
   3. forest.makeSet(v)
5. PriorityQueue Q // min edge weight
7. foreach (Edge e : G):
   8. Q.insert(e)
9. Graph T = (V, {})
11. while |T.edges()| < n-1:
   12.   Vertex (u, v) = Q.removeMin()
   14.   if forest.find(u) != forest.find(v):
   15.     T.addEdge(u, v)
   16.     forest.union( forest.find(u),
   17.                     forest.find(v) )
19. return T
```
Kruskal’s Algorithm

Which Priority Queue Implementation is better for running Kruskal’s Algorithm?

• Heap:

• Sorted Array: