November 4 – Disjoint Sets

G Carl Evans
Disjoint Sets
Disjoint Sets

Operation: find(4)
Disjoint Sets

Operation: \texttt{find(4) == find(8)}
Disjoint Sets

Operation:
if (find(2) != find(7)) {
 union(find(2), find(7));
}
Disjoint Sets

Key Ideas:
• Each element exists in exactly one set.
• Every set is an equitant representation.
 • Mathematically: \(4 \in [0]_R \implies 8 \in [0]_R\)
 • Programmatically: \(\text{find}(4) == \text{find}(8)\)
Disjoint Sets ADT

• Maintain a collection $S = \{s_0, s_1, \ldots s_k\}$

• Each set has a representative member.

• API:
 void makeSet(const T & t);
 void union(const T & k1, const T & k2);
 T & find(const T & k);
Implementation #1

Find(k):

Union(k1, k2):
Implementation #2

• We will continue to use an array where the index is the key

• The value of the array is:
 • -1, if we have found the representative element
 • The index of the parent, if we haven’t found the rep. element

• We will call theses UpTrees:

```
  0 1 2 3  
0 -1 -1 -1 -1
-1  -1  -1  -1
```

```
UpTrees
Disjoint Sets

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>6</td>
<td>-1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Disjoint Sets Find

```cpp
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; } else { return _find(s[i]); } }
```

Running time?

What is the ideal UpTree?
Disjoint Sets Union

```cpp
void DisjointSets::union(int r1, int r2) {
}
```
Disjoint Sets – Union

0 1 2 3 4 5 6 7 8 9 10 11
6 6 6 8 -1 10 7 -1 7 7 4 5
Disjoint Sets – Smart Union

**Union by height**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Idea:* Keep the height of the tree as small as possible.
Disjoint Sets – Smart Union

Idea: Keep the height of the tree as small as possible.

Idea: Minimize the number of nodes that increase in height

Both guarantee the height of the tree is: _______________.
Disjoint Sets Find

```cpp
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return _find(s[i]); }
}
```

```cpp
void DisjointSets::unionBySize(int root1, int root2) {
 int newSize = arr_[root1] + arr_[root2];
 // If arr_[root1] is less than (more negative), it is the larger set;
 // we union the smaller set, root2, with root1.
 if (arr_[root1] < arr_[root2]) {
 arr_[root2] = root1;
 arr_[root1] = newSize;
 }
 else {
 arr_[root1] = root2;
 arr_[root2] = newSize;
 }
}
```
Path Compression
Disjoint Sets Analysis

The **iterated log** function:

*The number of times you can take a log of a number.*

\[
\log^*(n) = \\
0, \quad n \leq 1 \\
1 + \log^*(\log(n)), \quad n > 1
\]

What is \(\lg^*(2^{65536})\)?
Disjoint Sets Analysis

In an Disjoint Sets implemented with smart \texttt{unions} and path compression on \texttt{find}:

Any sequence of \texttt{m union} and \texttt{find} operations result in the worse case running time of $O( \text{___________} )$, where $n$ is the number of items in the Disjoint Sets.