Graph Traversal – BFS

Big Ideas: Utility of a BFS Traversal

Obs. 1: Traversals can be used to count components.

Obs. 2: Traversals can be used to detect cycles.

Obs. 3: In BFS, d provides the shortest distance to every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, d, by more than 1: $|d(u) - d(v)| = 1$

Modifying BFS to create DFS

```plaintext
1 BFS(G):
2     Input: Graph, G
3     Output: A labeling of the edges on G as discovery and cross edges
4     foreach (Vertex v : G.vertices()):
5         setLabel(v, UNEXPLORED)
6     foreach (Edge e : G.edges()):
7         setLabel(e, UNEXPLORED)
8     foreach (Vertex v : G.vertices()):
9         if getLabel(v) == UNEXPLORED:
10             BFS(G, v)
11     BFS(G, v):
12         Queue q
13         setLabel(v, VISITED)
14         q.enQueue(v)
15         while !q.empty():
16             v = q.dequeue()
17             foreach (Vertex w : G.adjacent(v)):
18                 if getLabel(w) == UNEXPLORED:
19                     setLabel(v, w, DISCOVERY)
20                     setLabel(w, VISITED)
21                     q.enQueue(w)
22                 elseif getLabel(v, w) == UNEXPLORED:
23                     setLabel(v, w, CROSS)
```

DFS Graph Traversal

Idea: Traverse deep into the graph quickly, visiting more distant nodes before neighbors.

Two types of edges:

-
-

Minimum Spanning Tree

A Spanning Tree on a connected graph G is a subgraph, G', such that:

1. Every vertex is G is in G' and
2. G' is connected with the minimum number of edges

This construction will always create a new graph that is a _________ (connected, acyclic graph) that spans G.

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0
A Minimum Spanning Tree is a spanning tree with the minimal total edge weights among all spanning trees.

- Every edge must have a weight
 - The weights are unconstrained, except they must be additive (e.g., can be negative, can be non-integers)
- Output of a MST algorithm produces G':
 - G' is a spanning graph of G
 - G' is a tree

G' has a minimal total weight among all spanning trees. There may be multiple minimum spanning trees, but they will have the same total weight.

Pseudocode for Kruskal’s MST Algorithm

```plaintext
KruskalMST(G):
DisjointSets forest
foreach (Vertex v : G):
    forest.makeSet(v)
PriorityQueue Q  // min edge weight
foreach (Edge e : G):
    Q.insert(e)
Graph T = (V, {})
while |T.edges()| < n-1:
    Vertex (u, v) = Q.removeMin()
    if forest.find(u) == forest.find(v):
        T.addEdge(u, v)
        forest.union(forest.find(u), forest.find(v))
return T
```

Kruskal’s Algorithm

Based on our algorithm choice:

<table>
<thead>
<tr>
<th>Priority Queue Implementation</th>
<th>Total Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td></td>
</tr>
<tr>
<td>Sorted Array</td>
<td></td>
</tr>
</tbody>
</table>

Reflections

Why would we prefer a Heap?

Why would be prefer a Sorted Array?

CS 225 – Things To Be Doing:

1. Keep working on mp_mazes!
2. Mid-Project Check-ins this week! (Keep working on project)
3. Lab_hash released today!
4. POTD Ongoing