A Review of Major Data Structures So Far

<table>
<thead>
<tr>
<th>Array-based</th>
<th>List/Pointer-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sorted Array</td>
<td>- Singly Linked List</td>
</tr>
<tr>
<td>- Unsorted Array</td>
<td>- Doubly Linked List</td>
</tr>
<tr>
<td>- Stacks</td>
<td>- Skip Lists</td>
</tr>
<tr>
<td>- Queues</td>
<td>- Trees</td>
</tr>
<tr>
<td>- Hashing</td>
<td>- BTree</td>
</tr>
<tr>
<td>- Heaps</td>
<td>- Binary Tree</td>
</tr>
<tr>
<td>- Priority Queues</td>
<td>- Huffman Encoding</td>
</tr>
<tr>
<td>- UpTrees</td>
<td>- kd-Tree</td>
</tr>
<tr>
<td>- Disjoint Sets</td>
<td>- AVL Tree</td>
</tr>
</tbody>
</table>

Motivation:
Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:
1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

Graph Vocabulary
Consider a graph G with vertices V and edges E, $G=(V,E)$.

- **Incident Edges**:
 $$I(v) = \{ (x, v) \in E \}$$

- **Degree(v)**:
 $$|I|$$

- **Adjacent Vertices**:
 $$A(v) = \{ x : (x, v) \in E \}$$

- **Path(G_3)**: Sequence of vertices connected by edges

- **Cycle(G_1)**: Path with a common begin and end vertex.

- **Simple Graph(G)**: A graph with no self loops or multi-edges.

Subgraph(G): $G' = (V', E')$:
$$V' \in V, E' \in E, \text{ and } (u, v) \in E \Rightarrow u \in V', v \in V'$$

Graphs that we will study this semester include:
Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Size and Running Times
Running times are often reported by n, the number of vertices, but often depend on m, the number of edges.

For arbitrary graphs, the **minimum** number of edges given a graph that is:

- **Not Connected**:
 - **Minimally Connected**:

The **maximum** number of edges given a graph that is:

- **Simple**:

The relationship between the degree of the graph and the edges:
Proving the Size of a Minimally Connected Graph

Theorem: Every connected graph \(G = (V, E) \) has at least \(|V| - 1\) edges.

Proof of Theorem
Consider an arbitrary, connected graph \(G = (V, E) \).

Suppose \(|V| = 1:\)
Definition:

Inductive Hypothesis: For any \(j < |V| \), any connected graph of \(j \) vertices has at least \(j - 1 \) edges.

Suppose \(|V| > 1:\)
1. Choose any vertex:
2. Partitions:
 - \(C_0 := \)
 - \(C_k, k = [1...d] := \)
3. Count the edges:
 \[|E_G| = \]
 ...by application of our IH and Lemma #1, every component \(C_k \) is a minimally connected subgraph of \(G \)...

\[|E_G| = \]

Graph ADT

<table>
<thead>
<tr>
<th>Data</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vertices</td>
<td>\texttt{insertVertex(K key);}</td>
</tr>
<tr>
<td>2. Edges</td>
<td>\texttt{insertEdge(Vertex v1, Vertex v2, K key);}</td>
</tr>
<tr>
<td>3. Some data structure maintaining the structure between vertices and edges.</td>
<td>\texttt{removeVertex(Vertex v);} \texttt{removeEdge(Vertex v1, Vertex v2);} \texttt{incidentEdges(Vertex v);} \texttt{areAdjacent(Vertex v1, Vertex v2);} \texttt{origin(Edge e);} \texttt{destination(Edge e);}</td>
</tr>
</tbody>
</table>

Graph Implementation #1: Edge List

<table>
<thead>
<tr>
<th>Vert.</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>v</td>
<td>b</td>
</tr>
<tr>
<td>w</td>
<td>c</td>
</tr>
<tr>
<td>z</td>
<td>d</td>
</tr>
</tbody>
</table>

Operations:
- \texttt{insertVertex(K key):}
- \texttt{removeVertex(Vertex v):}
- \texttt{areAdjacent(Vertex v1, Vertex v2):}
- \texttt{incidentEdges(Vertex v):}

CS 225 – Things To Be Doing:

1. \texttt{mp_traversal} due today.
2. Daily POTDs are ongoing!