Binary Search Tree (BST) Finale

Q: How does our data determine the height?

1 3 2 4 5 7 6 vs. 4 2 3 6 7 1 5

Q: How many different ways are there to insert data into a BST?

Q: What is the average height of every arrangement?

...what's the intuition for this argument?

<table>
<thead>
<tr>
<th>operation</th>
<th>BST Avg. Case</th>
<th>BST Worst Case</th>
<th>Sorted Array</th>
<th>Sorted List</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>traverse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let us describe the balance (b) of a BST to be:

- If b is negative:
- If b is positive:

We define a BST tree T to be **height balanced** if:

A node is considered to be **out of balance** it’s not height balanced. What is the lowest node that is out of balance?
Brining a tree back into balance

Goal: Create a strategy to bring a BST back into balance after an operation has caused the tree to be out of balance.

A Tree Rotation is an operation that maintains two properties:

1.
2.

Example 1: Defining a Rotation

1. Where is the deepest point of imbalance in the tree:

2. Perform a left rotation to balance this tree:

Implementing a left rotation:

Example 2: A Complex Rotation

Rotation #1:

Rotation #2:

BST Rotation Summary:
1. Four kinds of rotations (L, R, LR, and RL)
2. All rotations are local
3. All rotations run in constant time, O(1)
4. BST property is maintained!

Overall Goal:

...and we call these trees:

<table>
<thead>
<tr>
<th>CS 225 – Things To Be Doing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. mp_mosaics EC due Monday</td>
</tr>
<tr>
<td>2. lab_huffman due Sunday</td>
</tr>
<tr>
<td>3. Daily POTDs</td>
</tr>
</tbody>
</table>