CS 225

Data Structures

March 2 – BST Balance
G Carl Evans

BST Analysis

Therefore, for all BST:

Lower bound: $h \ge O(lg(n))$

Upper bound: $h \le O(n)$

BST Analysis

The height of a BST depends on the order in which the data is inserted into it.

ex: 1324576

VS.

4236715

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

BST Analysis

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

BST Analysis – Running Time

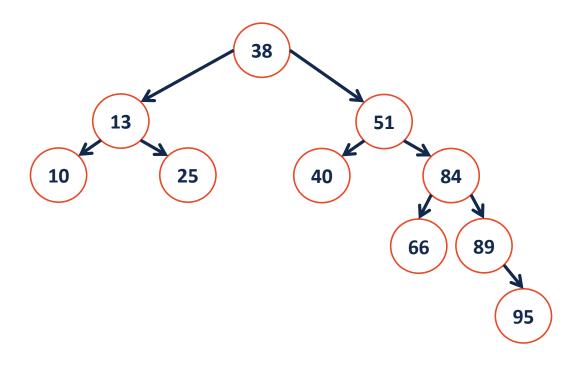
Operation	BST Average case	BST Worst case	Sorted array	Sorted List
find				
insert				
delete				
traverse				

Height-Balanced Tree

What tree makes you happier?

Height balance: $b = height(T_R) - height(T_L)$

A tree is height balanced if:

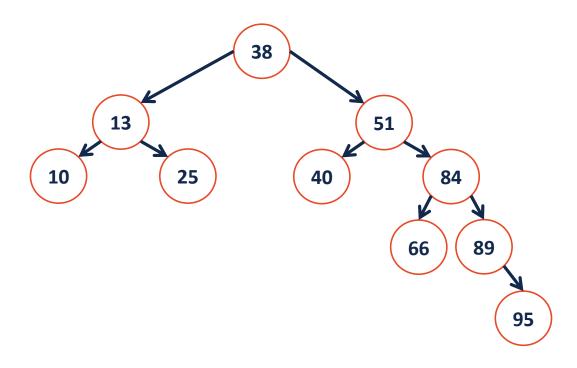


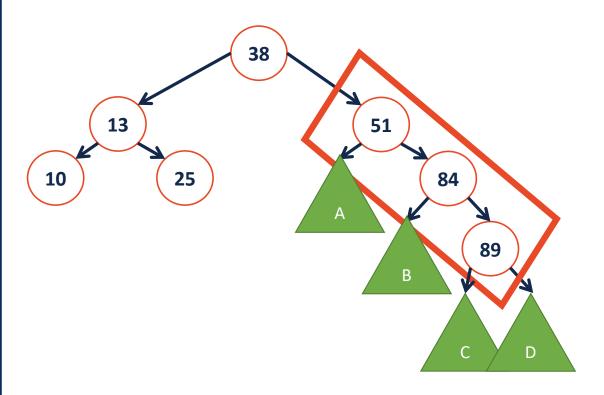
BST Rotation

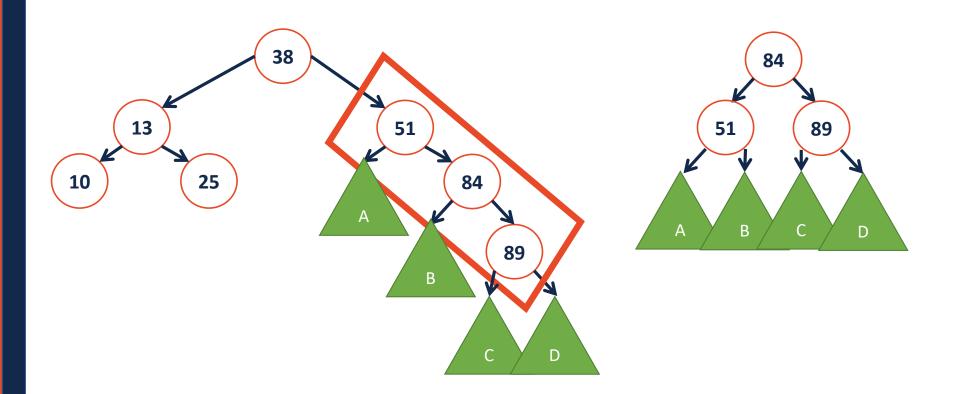
We will perform a rotation that maintains two properties:

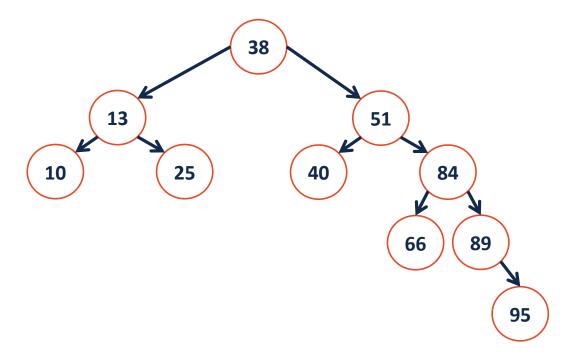
1.

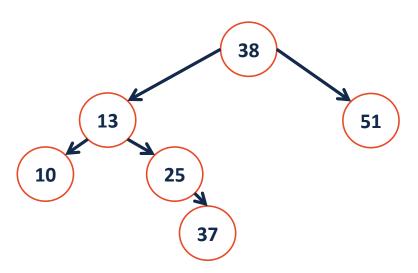
2.

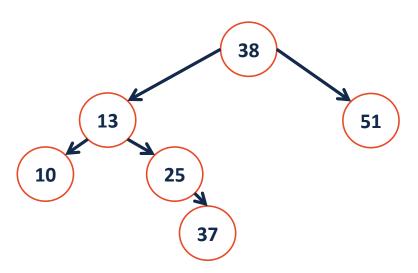












BST Rotation Summary

- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:

AVL Trees

Three issues for consideration:

- Rotations
- Maintaining Height
- Detecting Imbalance