CS 225

Data Structures

February 5 — Overloading

G Carl Evans

Destructor

[Purpose]:

Destructor

[Purpose]: Free any resources maintained by the class.

Automatic Destructor:
1. Exists only when no custom destructor is defined.

2. [Invoked]:

3. [Functionality]:

cs225/Cube.h

cs225/Cube.cpp

o Jdo Ul WN =

NRRRRBRRRERRRRBR
CWVWOWJdoOUd WNKH OV

#pragma once

namespace cs225 {
class Cube {
public:
Cube () ;
Cube (double length) ;
Cube (const Cube & other);
~Cube () ;

double getVolume () const;
double getSurfaceArea() const;

private:
double length ;

I

O VW 00 Jd

12
13
14
15

16
17
18
19
20
21
22
23
24
25

namespace cs225 {
Cube: :Cube () {

length = 1;
cout << "Default ctor"
<< endl;

}

Cube: :Cube (double length) {
length = length;
cout << "l-arg ctor"
<< endl;

//

Operators that can be overloaded in C++
+ - * [/ % ++ --
& | A SO
Assighment E

G ERC == !'= > < >= <=
Logical r&& ||

[1 0O ->

cs225/Cube.h

cs225/Cube.cpp

o Jdo Ul WN =

NRRRRBRRRERRRRBR
CWVWOWJdoOUd WNKH OV

#pragma once

namespace cs225 {
class Cube {
public:
Cube () ;
Cube (double length) ;
Cube (const Cube & other);
~Cube () ;

double getVolume () const;
double getSurfaceArea() const;

private:
double length ;

I

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

One Very Special Operator

Definition Syntax (.h):
Cube & operator=(const Cubeé& s)

Implementation Syntax (.cpp):
Cube & Cube: :operator=(const Cubeé& s)

Assignment Operator

Similar to Copy Constructor:

Different from Copy Constructor:

Assignment Operator

Copies an object Destroys an object

Copy constructor

Copy Assignment operator

Destructor

MP: Extra Credit

The most successful MP is an MP done early!

Unless otherwise specified in the MP, we will award +1
extra credit point per day for completing Part 1 before the
due date (up to +7 points):

Example for MP2:

+7 points:
+6 points:
+5 points:
+4 points:
+3 points:
+2 points:
+1 points:

Complete by Monday, Sept. 16 (11:59pm)
Complete by Tuesday, Sept. 17 (11:59pm)
Complete by Wednesday, Sept. 18 (11:59pm)
Complete by Thursday, Sept. 19 (11:59pm)
Complete by Friday, Sept. 20 (11:59pm)
Complete by Saturday, Sept. 21 (11:59pm)
Complete by Sunday, Sept. 22 (11:59pm)

MP2 Due Date: Monday, Sept. 23

MP: Extra Credit

We will give partial credit and maximize the value of your extra
credit:

You made a submission and missed a few edge cases in Part 1:
Monday: +7 * 80% = +5.6 earned

MP: Extra Credit

We will give partial credit and maximize the value of your extra
credit:

You made a submission and missed a few edge cases in Part 1:
Monday: +7 * 80% = +5.6 earned

You fixed your code and got a perfect score on Part 1:
Tuesday: +6 * 100% = +6 earned (maximum benefit)

MP: Extra Credit

We will give partial credit and maximize the value of your extra
credit:

You made a submission and missed a few edge cases in Part 1:
Monday: +7 * 80% = +5.6 earned

You fixed your code and got a perfect score on Part 1:
Tuesday: +6 * 100% = +6 earned (maximum benefit)

You began working on Part 2, but added a compile error:
Wednesday: +5 * 0% = +0 earned (okay to score lower later)

The “Rule of Three”

If it is necessary to define any one of these three
functions in a class, it will be necessary to define all

three of these functions:

Rvalue Reference or Move Semantics

* Rvalue

* Move
Cube (const Cubeé&é& s)noexcept

* Move Assignment
Cube & operator=(const Cube&& s)noexcept

The “Rule of Five”

If it is necessary to define any one of these five functions
in a class, it will be necessary to define all five of these
functions:

1.
2.

w

The “Rule of Zero”

Corollary to Rule of Five

Classes that declare custom destructors, copy/move constructors or copy/move
assignment operators should deal exclusively with ownership. Other classes
should not declare custom destructors, copy/move constructors or copy/move
assignment operators

—Scott Meyers

In CS 225

