CS ₂	#24: BTree Analysis
2 5	March 13, 2020 · G Carl Evans

BTree Properties

For a BTree of order **m**:

- 1. All keys within a node are ordered.
- 2. All leaves contain no more than **m-1** nodes.
- 3. All internal nodes have exactly **one more children than keys**.
- 4. Root nodes can be a leaf or have [2, m] children.
- 5. All non-root, internal nodes have [ceil(m/2), m] children.
- 6. All leaves are on the same level.

The height of the BTree determines maximum number of possible in search data.	
and the height of our structure:	
Therefore, the number of seeks is no more than:	

...suppose we want to prove this!

BTree Proof #1

In our AVL Analysis, we saw finding an **upper bound** on the height (\mathbf{h} given \mathbf{n} , aka $\mathbf{h} = \mathbf{f}(\mathbf{n})$) is the same as finding a **lower bound** on the keys (\mathbf{n} given \mathbf{h} , aka $\mathbf{f}^{-1}(\mathbf{h})$).

Goal: We want to find a relationship for BTrees between the number of keys (**n**) and the height (**h**).

BTree Strategy:

- 1. Define a function that counts the minimum number of nodes in a BTree of a given order.
 - a. Account for the minimum number of keys per node.

2. Proving a minimum number of nodes provides us with an upper-bound for the maximum possible height.

Proof:

1a. The minimum number of \underline{nodes} for a BTree of order \mathbf{m} at each level is as follows:

level is as follows:
root:
level 1:
level 2:
level 3:
level h:
1b. The minimum total number of <u>nodes</u> is the sum of all levels:
2. The minimum number of keys:

3. Finally, we show an upper-bound on height:

Given a BTree of order 101, how much can we store in a tree of height=4?					
Minimum:					
Maximum:					
	This	snace	Intentionally	left	hlank

CS 225 – Things To Be Doing:

- Enjoy Break stay healthy
 Mp_lists is due March 27 by 11:59pm;
 Daily POTDs stopped for break
 Check out tools from the survey