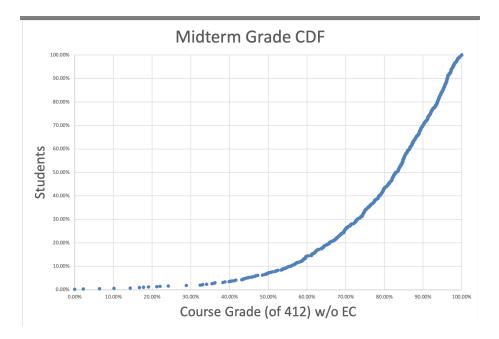

BTree Motivation

Can we always fit our data in main memory?

Where else do we keep our data?

vs. CPU: 3 GHz == 3m ops / _____ * ___ cores

AVL Operations on Disk:



How deep do AVL trees get?

BTree Motivations

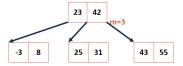
Knowing that we have long seek times for data, we want to build a data structure with two (related) properties:

1.

BTree_m

-3 8 23 25 31 42 43 55

Goal: Build a tree that uses _____/node! _____/node! _____/note! _____/note!


A **BTree of order m** is an m-way tree where:

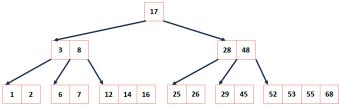
1. All keys within a node are ordered.

BTree Insert, using m=5

...when a BTree node reaches **m** keys:

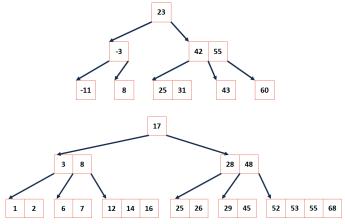
BTree Insert, m=3:

Great interactive visualization of BTrees:


https://www.cs.usfca.edu/~galles/visualization/BTree.html

BTree Properties

For a BTree of order **m**:


- 1. All keys within a node are ordered.
- 2. All leaves contain no more than **m-1** nodes.
- 3. All internal nodes have exactly **one more key than children**.
- 4. Root nodes can be a leaf or have [2, m] children.
- 5. All non-root, internal nodes have [ceil(m/2), m] children.
- 6. All leaves are on the same level.

Example BTree

What properties do we know about this BTree?

BTree Search

CS 225 - Things To Be Doing:

- mp_traveral extra credit ongoing (final deadline Monday, March. 23rd)
- 2. lab_avl released this week; course feedback in lab this week!
- 3. Daily POTDs are ongoing!