

lab_debug : Disastrous Debugging
Week #2 – January 23-25, 2019

Welcome to Lab Debug!
Course Website: https://courses.engr.illinois.edu/cs225/sp2019/labs

Overview
In this week’s lab, you will get to practice an essential skill in
computer science: debugging. This worksheet will get you familiar
with some “best practices” and questions to ask yourself when
debugging your code. For a more comprehensive list, see lab_debug’s
webpage.

Understanding the Logic
The first step in debugging is to understand what the code is meant to
do. This will make catching “logic errors” (errors in the logic of the
code) easy.
One good way to debug such errors is to execute the code in your
head, line by line, and explain to yourself (even a rubber duck!): What
is this line trying to do? Is it doing what it is supposed to do?

Exercise 1: There are two bugs in this piece of code - find and correct
them.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void blackStripes(PNG* myimage){
 for(unsigned h=0;h<myimage->height(); h++){
 // WILL CAUSE INFINITE LOOP IF THERE IS NO h++
 for (unsigned w=0;w<myimage->width();w+=2){
 HSLAPixel& current = myimage-> getPixel(w,h);
 double* lum = ¤t.l;
 lum = 0; // LUM IS A POINTER: CURRENT.L VALUE
 // WILL NOT CHANGE!!
 INSTEAD DO:
 *lum =0; OR:
 current.l = 0;
 }
 }
}

Stack or Heap?
Remember that stack and heap memory have different lifetimes. The
lifetime of a variable on the stack is based on its “scope.” Once its
scope is over, it is de-allocated automatically. The lifetime of a variable
on the heap is controlled by you. Heap memory is de-allocated only
when the application exits or when you explicitly free it. You can
request memory on the heap using the keyword new.
A segmentation fault (segfault), occurs when a program tries to
access memory that doesn’t belong to it. Segfaults often occur
when using uninitialized, null or invalid pointers.
When declaring and initializing variable, think about where it should
be saved: on the stack or on the heap.

Exercise 2.1: For each variable below, state whether it is stored on
the stack or the heap. For pointers, also answer where it is pointing
to.

- width is stored on: _STACK_
- cube is stored on: _STACK_

as a pointer, it stores an address that belongs to: _HEAP __
- cube_double is stored on: _STACK_

as a pointer, it stores an address that belongs to: _STACK __
- v and s are stored on: _STACK_

Exercise 2.2: One line in the code below may cause a segfault when
the code is run. Which line is it? _line 10_ Fix the code so no segfault
occurs. Note: please do not change function signatures!

Line 10 might segfault because cube_double is a pointer to the return
address of CreateDoubleCube() which is on the stack (c). By the time
cube_double->getVolume() is called in line 10, there is NO
GUARANTEE that the stack memory where c was stored hasn’t been
overwritten already and does not represent an Cube anymore.

main.cpp
1
2
3
4
5
6
7
8
9
10

Cube *CreateDoubleCube(Cube *original) {
 double width = original->w;
 Cube c(2*width); Cube c = new Cube(2*width);
 return &c;
}

int main() {
 Cube *cube = new Cube(10);
 Cube *cube_double = CreateDoubleCube(cube);
 double v = cube_double->getVolume();

11
12
13
14

 double s = cube_double->getSurfaceArea();
 cout << v << " " << s << endl;
 return 0;
}

Copying Correctly
When copying variables, we need to think about two things - what we
want to copy (value or address) and what is the type of the variable we
want to copy (primitive or complex). Depending on the case, we can
use a “deep copy” or a “shallow copy.” A deep copy allocates new
memory and copies values over. On the other hand, a shallow copy
just copies the pointer without allocating new memory. Keep this in
mind as you work through Exercise 3.

Exercise 3.1: What will be printed out in lines 10 and 12 of main.cpp?
Both lines will print out 3*3*3=27. BOTH width variables have been
changed because line 7 (c2 = c1) only creates a “shallow” copy of c1,
meaning c2 will point to the SAME heap memory address that c1 points
to, IT WILL NOT CREATE A NEW CUBE OBJECT! Thus if we change
one width variable, the other automatically changes too.

Exercise 3.2: Fix the code so that the content of c1 is copied into c2.

Cube.h Cube.cpp
1
2
3
4
5
6
7
8
9
10

#pragma once

class Cube{
 public:
 double w;
 double getVolume();

};

1
2
3
4
5
6
7
8
9
10

#include “Cube.h”

double
Cube::getVolume(){
 return w * w * w;
}

main.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

int main(){
 Cube* c1 = new Cube();
 c1->w = 4;
 Cube* c2 = new Cube(); //allocate new heap memory

 c2 = c1;
 c2->w = c1->w; OR: *c2 = *c1; //deep copy c1 to c2
 c2->w = 3; //only change c2’s width
 std::cout<<c1->getVolume()<<std::endl; …27 BEFORE
 CORRECTIONS
 std::cout<<c2->getVolume()<<std::endl; …27…

 // Clean up memory
 delete c1;
 delete c2; //ERROR !! Why? //before corrections,
heap memory was allocated only for c1, “delete c2”
will try to delete the same memory block twice,
causing an error.
}

In the programming part of this lab, you will:

- Learn about debugging techniques and best practices
- Explore the given code and discover how it modifies images
- Find and correct bugs in the code

As your TA and CAs, we’re here to help with your

programming for the rest of this lab section! ☺

