CS 225

Data Structures

April 11 — Graphs

Wade Fagen-Ulmschneider

L

AN

i
4 SNEER
b

sy

To study all of these structures:

1. A common vocabulary

2. Graph implementations ol
3. Graph traversals <IN
4. Graph algorithms . O

P —
K Gl Tojare
.
.
Toks *
i
HAMLET TROILUS AND CRESSIDA 4
Morgan Stanley % !
) B ¢
oTresne .
® Brad
Illinois ¥
° ° - D o .
Illinois(ish) St. Louis .
® emidland ot S e R TR
ks . Leal;
Bryne A
@ ® e pGCsaAB o
° .t
llinois ot
uT-Dal ¥ * '
(1Y o |
SO0 fe Famiy & i b
® °
UT-Dallas ° y g
y Wedding .
) eoe

ee
0®

Graph Vocabulary

G =(V, E)

Incident Edges:
I(v) ={(x,v)inE}

Degree(v): |1|

Adjacent Vertices:
A(v)={x:(x,v)inE}

Path(G,): Sequence of vertices
connected by edges

Cycle(G,): Path with a
common begin and end
vertex.

Simple Graph(G): A graph with
no self loops or multi-edges.

Graph Vocabulary

Subgraph(G):

G'=(V,E):
VeV, E €E, and
(uvV)EE>Uu€EV,veV

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Running times are often reported by n, the number of
vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:

Maximum edges:
Simple:

Not simple:

> degiv) =
rizl

Connected Graphs

O O

O O
O O

Proving the size of a minimally connected graph

Theorem:
Every minimally connected graph G=(V, E) has |V|-1 edges.

Thm: Every minimally connected graph G=(V, E) has |V|-1 edges.
Proof: Consider an arbitrary, minimally connected graph G=(V, E).

Lemma 1: Every connected subgraph of G is minimally connected.
(Easy proof by contradiction left for you.)

Inductive Hypothesis: For any j < |V|, any minimally connected
graph of j vertices has j-1 edges.

Suppose |V| =1:
Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: |V|-1 edges = 1-1 = 0.

Suppose |V] > 1:
Choose any vertex u and let d denote the degree of u.

Remove the incident edges of u, partitioning the graph into
components: C, = (V, E,), ..., C4 = (Vy, Ey).

SO,
@/
By Lemma 1, every component C, is a minimally >~ £ "
connected subgraph of G. @>

By our

Finally, we count edges:

Graph ADT Functions:

Data: - insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- Vertices

- Edges

_ Some data structure - femoveVertex(Vertex v);
maintaining the - removeEdge(Vertex v1, Vertex v2);
structure between
vertices and edges. - incidentEdges(Vertex v);

- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

W

d C

N |

W W @ insertVertex(K key);

— S Sl removeVertex(Vertex v);

v b areAdjacent(Vertex v1, Vertex v2);
- i incidentEdges(Vertex v);
z d

Graph Implementation: Adjacency Matrix

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

