
Final Exam Review

CS225

By Mariam Vardishvili,
thanks to: Milica Hadzi-Tanovic

Wade Fagen-Ulmschneider

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Key Ideas:
• Each element exists in exactly one set.
• Every set is an equitant representation.
• Mathematically: 4 ∈ [0]R à 8 ∈ [0]R
• Programmatically: find(4) == find(8)

Disjoint Sets ADT

•Maintain a collection S = {s0, s1, … sk}

• Each set has a representative member.

• API: void makeSet(const T & t);
void union(const T & k1, const T & k2);
T & find(const T & k);

Implementation #1

0 1 4 2 7 3 5 6

1 2 3 4 5 6 70

0 7 3 0 3 3 70

Find(k): O(1)

Union(k1, k2): O(n)

0 7 3

Implementation #2

•We will continue to use an array where the index is the
key

• The value of the array is:
• -1, if we have found the representative element
• The index of the parent, if we haven’t found the rep. element

•We will call theses UpTrees:
1 2 30

-1 -1 -1-1

0 1 2 3

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

1 2 30 1 2 30

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

1 2 30

-1 -1 -13

1 2 30

Union (3,0)

0 1 2

3

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

-1 -1 13

1 2 30

-1 -1 -13

1 2 30

Union (3,0)

0 1 2

3

Union (1,3)

0

1

2

3

Find(0) = 1

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

-1 -1 13

1 2 30

-1 -1 -13

1 2 30

Union (3,0)

0 1 2

3

Union (1,3)

0

1

2

3

Find(0) = 1

Union (2,0)
1

0 2

3

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

-1 -1 13

1 2 30

-1 -1 -13

1 2 30

Union (3,0)

0 1 2

3

Union (1,3)

0

1

2

3

Find(0) = 1

Union (2,0)

0

1

2

3

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

-1 -1 13

1 2 30

-1 -1 -13

1 2 30

Union (3,0)

0 1 2

3

Union (1,3)

0

1

2

3

Find(0) = 1

Union (2,0)

0

1

2

3

We have to find representative elements for each set to do
Union

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

-1 -1 13

1 2 30

-1 -1 -13

1 2 30

Union (3,0)

0 1 2

3

Union (1,3)

0

1

2

3

Find(0) = 1

Union (2,0)

Find(2) = 2
Find(0) = 1 Union (2,1)

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

-1 -1 13

1 2 30

-1 -1 -13

1 2 30

Union (3,0)

0 1 2

3

Union (1,3)

0

1

2

3

Find(0) = 1

Union (2,0)

Find(2) = 2
Find(0) = 1 Union (2,1)

2

1. 2-> 1

0

1

3

UpTrees

1 2 30

-1 -1 -1-1

0 1 2 3

1 2 30

-1 -1 13

1 2 30

-1 -1 -13

1 2 30

2 -1 13

Union (3,0)

0 1 2

3

Union (1,3)

0

1

2

3

Find(0) = 1

Union (2,0)

Find(2) = 2
Find(0) = 1 Union (2,1)

2

2. 1-> 2

0

1

3

Disjoint Sets Find

Running time?
Structure: A structure similar to a linked list
Running time: O(h) == O(n)

What is the ideal UpTree?
Structure: One root node with every other node as it’s child
Running Time: O(1)

int DisjointSets::find() {
if (s[i] < 0) { return i; }
else { return _find(s[i]); }

}

1
2
3
4

2

5

9
83

1
7

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70

8 5 -1 -1 -1 3 -14

8 9

4 5

0

1

2

345

6

7

8
9

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70

8 5 -1 -1 -1 3 -14

8 9

4 5

0

1

2

345

6

7

8
9

Union(5,7) vs Union (7, 5)

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70

8 5 -1 -1 -1 3 -14

8 9

4 5

0

1

2

345

6

7

8
9

Union (7, 5) – height increases! L

Disjoint Sets – Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -1 10 7 -16

8 9

7 7

10 11

4 5

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height Idea: Keep the height of
the tree as small as
possible.

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height Idea: Keep the height of
the tree as small as
possible.

Average node is further away from the root node L

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Both guarantee the height of the tree is: O(lg n)

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -4 10 7 -36

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height

Union by size

Value = -h -1
(to avoid 0s)

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -4 10 7 -36

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 -4 10 7 -86

8 9

7 7

10 11

4 5

Union by height

Union by size

Value = h -1
(to avoid 0s)

Value = - n

Disjoint Sets Find
int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return _find(s[i]); }

}

1
2
3
4

void DisjointSets::unionBySize(int root1, int root2) {
int newSize = arr_[root1] + arr_[root2];

// If arr_[root1] is less than (more negative), it is the larger set;
// we union the smaller set, root2, with root1.
if (arr_[root1] < arr_[root2]) {
arr_[root2] = root1;
arr_[root1] = newSize;

}

// Otherwise, do the opposite:
else {
arr_[root1] = root2;
arr_[root2] = newSize;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Disjoint Sets Find
int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return _find(s[i]); }

}

1
2
3
4

void DisjointSets::unionBySize(int root1, int root2) {
int newSize = arr_[root1] + arr_[root2];

// If arr_[root1] is less than (more negative), it is the larger set;
// we union the smaller set, root2, with root1.
if (arr_[root1] < arr_[root2]) {
arr_[root2] = root1;
arr_[root1] = newSize;

}

// Otherwise, do the opposite:
else {
arr_[root1] = root2;
arr_[root2] = newSize;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

!(ℎ) ≡ !(lg ()

Running time of Union is O(1),
given root nodes, O(h) otherwise.

Path Compression

1

2

3

6

7

8

9

4

5

10

11

Find(4) ->Find(2) ->Find (7)->Find(9)->Find(10)

2 7 9 10 - k

When we unwind recursion, we update every element we visited to point to the
root node

Path Compression

1

2

3

6

7

8

9

4

5

10

11

Find(4) ->Find(2) ->Find (7)->Find(9)->Find(10)

2 7 9 10 - k

10 10 10 10 - k

When we unwind recursion, we update every element we visited to point to the
root node

1

2

3

6

7

8

94

5

10

11

This is self improving algorithm.
Running time gets better and better.

Overall running time of the algorithm is
going to be better than AVL tree.

Path Compression

1

2

3

6

7

8

9

4

5

10

11

Find(4) ->Find(2) ->Find (7)->Find(9)->Find(10)

2 7 9 10 - k

10 10 10 10 - k

When we unwind recursion, we update every element we visited to point to the
root node

1

2

3

6

7

8

94

5

10

11

This is self improving algorithm.
Running time gets better and better.

Overall running time of the algorithm is
going to be better than AVL tree.

Since first find takes
O(log n) time, we
cannot call this
algorithm O(1).

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0 , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536)?

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0 , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536) -> 65536 -> 16 -> 4 -> 2 -> 1

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O(! lg∗(%)),

where n is the number of items in the Disjoint Sets.

When used with other algorithms we will say running time is O(1)

Graphs
1. A common vocabulary

2. Graph implementations

3. Graph traversals

4. Graph algorithm

Graph vocabulary

A graph G is a tuple of a set of vertices V, and a set of edges E

G1

G2
G3

G = (V, E)
|V| = n //number of vertices
|E| = m //number of edges

Graph vocabulary

Graph vocabulary

• Incident edges → all edges that touch that node
§ !(#) = { {', #} *+ ,}

We identify an edge by stating two vertices it connects.

Incident edges for - are (., /), (., 0), (.,1)

(q, r)

u

q

r

w
X

V

S
t u

q

r

w
X

V

S
t

Graph vocabulary
• Degree → the number of incident edges.

§ !"#$""(&) = |*(&)|

Degree(v) = 3

u

q

r

w
X

V

S
t

Graph vocabulary
• Adjacent vertex → a vertex at the other end of the incident edge.

§ ! " = {%: %, " () *}

, - = {.,/, 0}

u

q

r

w
X

V

S
t

Graph vocabulary
• Path → a sequence of vertices connected by edges.

Path from ! to " is: {$, &,', (,)}

u

q

r

w
X

V

S
t

Graph vocabulary
• Cycle → a path with common beginning and end.

u

q

r

w
x

v

s
t

Graph vocabulary
• Simple Graph →A graph with no self loops and multi-edges

q

Self loop

v q

Multi-edges

Graph vocabulary
• Subgraph →any subset of vertices such that every edge in the

subgraph implies that both vertices that are incident to that edge are
part of that graph Subgraph(G):

G’ = (V’, E’):
V’ ∈ V, E’ ∈ E, and
(u, v) ∈ E à u ∈ V’, v ∈ V’

ü G1 G2, G3 and G4 are subgraphs of G

G1
G2

G3

G
G4

ü G4 is also a subgraph of G2

Graph vocabulary
• Complete subgraph: every two distinct vertices are adjacent.

Graph vocabulary
• Connected subgraph: there is a path between every two vertices in the graph.

Graph vocabulary

G1
G2

G3

G

• Connected component: a connected subgraph where non of the vertices are
connected to the rest of the graph.

G1, G2 and G3 are connected components.

Properties of Graph

Properties of Graph
Running times are often reported by n (the number of vertices) but often
depend on m (the number of edges).

• Minimum number of edges (m):
o Not Connected: m = 0
o Connected: m = n-1

u

V

tu

v

t

Example 1. Example 2.

Properties of Graph
• Maximum edges (m):
o Not simple: m = ∞, since we can have multiple edges

between vertices.
o Simple: ∑!"#$%# #

Example 1.

ut

Example 2.

Maximum edges in simple graph:

n m
1 0
2 1
3 3
4 6
5 10
... ...
n

!
!"#

$%#
"

Properties of Graph
Sum of all degrees of all vertices:

!
!"#

deg % = 2 ∗)

ut

!
!"#

deg % = 2 !
!"#

deg % =6

u

V

t

Graph ADT

Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Data:
- Vertices
- Edges
- Some data structure

maintaining the
structure between
vertices and edges.

X

V

W

Z

Y

b

e
d

f
g

h

Graph ADT

Graph Implementation: Edge List

v

u

w

a c
b

z
d

b

u

v

w

z

a

c

d

Array of vertices:
× Takes time to find a specific vertex

Hash table:
ü find takes O(1) time

Graph Implementation: Edge List

v

u

w

a c
b

z
d

b

u

v

w

z

v u a

v w

u w c

w z d

Hash table

Given we use list for edges, what is the running time of
insertVertex and removeVertex?

List

• InsertVertex take O(1) time, since inserting into
hash table takes O(1) time.

• Removing vertex means removing vertex from
hash table and removing corresponding edges
from the list. Running time will be: O(1) + O(m)

Graph Implementation: Edge List

v

u

w

a c
b

z
d

insertVertex(K key) – O(1)

removeVertex(Vertex v) – O(m)

areAdjacent(Vertex v1, Vertex v2) – O(m)

incidentEdges(Vertex v) – O(m)
b

u

v

w

z

a

c

d

Hash table List

The relationship between number of nodes
and the number of edges can be !!; which
means that O(m) could in fact be "(!!)

Graph Implementation: Hash table for edges

v

u

w

a c
b

z
d

b

u

v

w

z

u v a

v w

u w c

w z d

We cannot use a hash table for edges, there is

no random distribution (no SUHA) and that

would defeat the purpose of the hash table.

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

insertVertex(K key) :
removeVertex(Vertex v) :
areAdjacent(Vertex v1, Vertex v2):
incidentEdges(Vertex v) :

u v w z
u - 1 1 0
v - 1 0
w - 1
z -

u

v

w

z

u v a

v w b

u w c

w z d

O(1)

u v w z
u - 1 1 0
v - 1 0
w - 1
z -

Adjacency Matrix
• Number one denotes a pointer to the

edge in the edge list when two nodes

are adjacent;

• If the graph is not directed bottom

triangle is symmetric to the upper

triangle, so we can ignore it.

u

v

w

z

u v a

v w b

u w c

w z d Space complexity !(#!)

v

u

w

a c
b

z
d

• Insert y in the hash table O(1);
• Insert data into the matrix:
• If matrix is full double the size of matrix

(double rows and columns)

u v w z
u - 1 1 0
v - 1 0
w - 1
z -

u

v

w

z

u v a

v w b

u w c

w z d

y

y

insertVertex(K key) :

insertVertex(K key) :

v

u

w

a c
b

z
d

• Insert y in the hash table O(1);
• Insert data into the matrix:
• If matrix is full double the size of matrix

(double rows and columns):
O(n)* = !(#!)/! #

u v w z y

u - 1 1 0

v - 1 0

w - 1

z -

y -

u

v

w

z

u v a

v w b

u w c

w z d

y

y

O(n)*

removeVertex(u) :

v

u

w

a c
b

z
d

• Remove u from the hash table - O(1);
• Go through the row and column u and

remove all the edges (O(n)):
• Removing element from the list (after it is

located, takes O(1) time.
• …

u

v

w

z

u v a

v w b

u w c

w z d

u v w z
u - 1 1 0
v - 1 0
w - 1
z -

removeVertex(u) :

v

u

w

a c
b

z
d

• Remove u from the hash table - O(1);
• Go through the row and column u and

remove all the edges (O(n)):
• Removing element from the list (after it is

located, takes O(1) time.
• Repair structure of the table - O(n)

u

v

w

z

u v a

v w b

u w c

w z d

v w z

v - 1 0
w - 1
z -

removeVertex(u) :

v

u

w

a c
b

z
d

• Remove u from the hash table - O(1);
• Go through the row and column u and

remove all the edges (O(n)):
• Removing element from the list (after it is

located, takes O(1) time.
• Repair structure of the table - O(n)

u

v

w

z

u v a

v w b

u w c

w z d

z v w
z - 0 1
v - 1
w -

O(n)

incidentEdges(Vertex v):

v

u

w

a c
b

z
d

u

v

w

z

u v a

v w b

u w c

w z d

u v w z
u - 1 1 0
v - 1 0
w - 1
z -

Finding incident edge requires going through
the row and column – O(n)

O(n)

Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z
u Ø Ø

v Ø Ø

w Ø

z Ø

u v a

v w b

u w c

w z d

Key Ideas:
- Given a vertex, O(1) lookup in vertex

list
- Given a pair of vertices (an edge),

O(1) lookup in the matrix
- Undirected graphs can use an upper

triangular matrix

Better running time: O(n) or O(m)?

a

e

b

f
j h

i

p

d c

There is no clear winner!

Adjacency List

v

u

w

a c
b

z
d

Key Ideas:
- O(1) lookup in vertex list
- Vertex list contains a doubly-linked

adjacency list
- O(1) access to the adjacent vertex’s

node in adjacency list (via the edge
list) - Vertex list maintains a

count of incident
edges, or deg(v)

- Many operations run
in O(deg(v)), and
deg(v) ≤ n-1, O(n).

uu

v

w

z

v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

removeVertex(u) :

v

u

w

a c
b

z
d

• Remove u from the hash table - O(1);
• Go though the incident list and remove all

the edges:
o ! has deg(!) edges in the list;
o Removing element from the adj list takes
'(1) time – removing all the edges will take

deg(%) ∗ ((1)

!(deg(&))

uu

v

w

z

v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

areAdjacent(Vertex v1, Vertex v2):

v

u

w

a c
b

z
d

!(min(deg()1), deg()2)))

• To check adjacent nodes, we need to go through incident

edges of one of the vertices:

ü Choose the vertex with smaller list:

• !(min(deg()1), deg()2)))

uu

v

w

z

v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

incidentEdges(Vertex v):

v

u

w

a c
b

z
d

• Go through incident edges of the vertices:

!(deg &)

uu

v

w

z

v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

Expressed as O(f) Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1 n 1

removeVertex(v) m n deg(v)

insertEdge(v, w, k) 1 1 1

removeEdge(v, w) 1 1 1

incidentEdges(v) m n deg(v)

areAdjacent(v, w) m 1 min(deg(v),
deg(w))

Expressed as O(f) Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1 J n 1 J

removeVertex(v) m n deg(v) J

insertEdge(v, w, k) 1 J 1 J 1 J

removeEdge(v, w) 1 J 1 J 1 J

incidentEdges(v) m n deg(v) J

areAdjacent(v, w) m 1 J min(deg(v),
deg(w))

Sparse graphs

The graph is not connected →
! < # ⇒ deg (< # ⇒ 2! < #.

Advantage to use: adjacency list implementation

Use cases:

Dense graphs

The graph is almost fully connected →
! ~ #!, degree v ~n

We can use either adjacency list or adjacency matrix.
It depends on the operations we need (are adjacent or insert vertex).

Traversal:
Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

Tree traversal vs Graph traversal

• Ordered
• Obvious Start
•

• Any order
• Arb. Starting point
• No notion of completeness

BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

Traversal: BFS

BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

Traversal: BFS

If we have already visited vertex w, but have not explored the edge (v, w), it means that
edge is the cross edge.

v

u

w

a c
b

z
d

Starting Vertex

Algorithm setup:
Label each edge:
• Discovery edge (bolded) or
• Cross edge (dashed)

Table of vertices with following features:
• Vertex name - key
• Boolean flag - visited
• Distance it took to get to the vertex
• Predecessor
• List of adjacent vertices

• Queue

key visited dist. pred. adj.
vertices

A C B D

B A E C

C A B D E F

D A C F H

E B C G

F C D G

G E F H

H D G

Ø Chose a starting point, add it to the queue, set its visited flag in the table, set distance
value to 0, and predecessor value to null.

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B A E C

C A B D E F

D A C F H

E B C G

F C D G

G E F H

H D G
A

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B A E C

C A B D E F

D A C F H

E B C G

F C D G

G E F H

H D G
A

Queue

Dequeue and loop over the adjacent vertices of the dequeued element.
Examine each adjacent vertex:
• If the vertex has not been visited, mark the edge to the vertex as discovery

edge; update it’s visited flag, distance, and predecessor, and add the vertex to
the queue.

• Otherwise if the edge is not explored yet just mark the edge as cross edge
and move on to the next vertex.

We will dequeue A and examine vertices C, B, and D.

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E B C G

F C D G

G E F H

H D G
A C B D

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G E F H

H D G
A C B D E F

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G E F H

H D G
A C B D E F

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G E F H

H ✓ 2 D D G
A C B D E F H

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

Traversal: BFS

Our implementation handles disjoint graphs.
How do we use this to count components?
Add component counter before BFS call;

BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

comps++;
BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

Traversal: BFS

Our implementation handles disjoint graphs.
How do we use this to count components?
Add component counter before BFS call;

BFS Analysis
Q: Does our implementation detect a cycle?
• How do we update our code to detect a cycle?

Yes. Existence of at least one cross edge guarantees cycle.
BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

Running time of BFS
BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

1
2
3
4
5
6
7
8
9
10
11
12

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

6-7: O(n)
8-9: O(m)
If the graph is connected component we call
BFS only once (12)
15-17: O(1)

19 -> while runs n times
20 – O(1)
21: degree(v) times, ∑!"# deg % = 2 ∗) =>
19-27: O(n+m) time
22-27: O(1)

O(n+m)

Running time of BFS
BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

1
2
3
4
5
6
7
8
9
10
11
12

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

O(n+m)

This is optimal running time because we know we have to visit
every edge and vertex, therefore we cannot do better than O(n+m).

BFS Observations

A

C D

E

B

F

G H

d p v Adjacent

0 A A C B D

1 A B A C E

1 A C B A D E F

1 A D A C F H

2 C E B C G

2 C F C D G

3 E G E F H

2 D H D G

Q: What is a shortest path from A to H?
Path: A,D,H
Q: What is a shortest path from E to H?
No information about this.
BFS finds shortest path only from starting
vertex (in graphs without weights) ;
Q: How does a cross edge relate to d?

∆" ≤ 1
Q: What structure is made from
discovery edges?
We get new graph structure: spanning
tree!

DFS – Depth First Search

Algorithm setup:
Everything is the same as BFS except for:
• We will use stack instead of a queue.
• We will label cross edges as back edges.

Algorithm setup:
Label each edge:
• Discovery edge (bolded) or
• back edge (dashed)

Table of vertices with following features:
• Vertex name - key
• Boolean flag - visited
• Distance it took to get to the vertex
• Predecessor
• List of adjacent vertices

• Stack

Algorithm logic:
• We will start with A and run the same algorithm as we did for BFS but we will be using stack.

Add A to the stack and update A

Pop A and examine adjacent vertices.

After visiting all vertices and edges, we get the following result:

DFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and back edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

DFS(G, v)

1
2
3
4
5
6
7
8
9
10
11
12

DFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
DFS(G, w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, BACK)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

A

C

D

E

B
F

G

H

J
K

DFS with recursion:

We visit D first and we are immediately
recusing from D.

A

C

D

E

B
F

G

H

J
K

Order of vertices does not matter.

DFS with recursion:

Next we visit C first and we are
immediately recusing from C.

A

C

D

E

B
F

G

H

J
K

A

C

D

E

B
F

G

H

J
K

Next we visit B first.
We visited all neighbors for B, so we will
go back to C.

DFS with recursion:

Next we visit G first and we are
immediately recusing from G.

A

C

D

E

B
F

G

H

J
K

Next we visit F first.
Since D is already visited (F,D) is labeled
as back edge.
F is done and we go back to G.

A

C

D

E

B
F

G

H

J
K

DFS with recursion:

Next we visit H and we label another
back edge (H,D). H will be done, we will
go back to G.

Next we visit J.

A

C

D

E

B
F

G

H

J
K

A

C

D

E

B
F

G

H

J
K

DFS with recursion:

Next we visit K.
(A,K) labeled as back edge.

Next we visit E.
(E,G) becomes back edge and E will be
done.

A

C

D

E

B
F

G

H

J
K

A

C

D

E

B
F

G

H

J
K

* You should also keep track of distance and parents.

DFS with recursion:

A

C

D

E

B
F

G

H

J
K

• Back edge is getting us closer to starting vertex;
• Existence of back edges means there is a cycle;
• Discovery edges gives us spanning tree;
• DFS can gives us component count;

Minimum Spanning Tree Algorithms
Input: Connected, undirected graph G with edge
weights (unconstrained, but must be additive)

Output: A graph G’ with the following properties:
•G’ is a spanning graph of G
•G’ is a tree (connected, acyclic)
•G’ has a minimal total weight among all spanning

trees A

C D

E

B

F

8 42
7 1

2 3 9 5

Kruskal’s Algorithm
(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)

(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)

(G, H)

Sorted list of edges:

Algorithm setup:
• Maintain a list of edges sorted by weight in increasing

order → min heap.
• Initialize a disjoint set (up tree) for each vertex.

Kruskal’s Algorithm

• Remove minimum from the heap;
• Check that the two vertices, that form the removed edge,

are in different disjoint sets.
• If they are, add the edge to the spanning tree and union

the two sets.
• Otherwise, ignore that edge and move on.

Kruskal’s Algorithm

Kruskal’s Algorithm

• remove edge (A, D) from the heap.
• Vertex A and vertex D are in different sets. Therefore, we can add edge (A, D)

and union sets {A} and {D}.

Kruskal’s Algorithm

Kruskal’s Algorithm

Kruskal’s Algorithm

Next:
We skip (B,D) since they are in the same set.

Kruskal’s Algorithm

Next:
We skip (G,H) since they are in the same set.

Kruskal’s Algorithm

Next:
We skip (C, H), (E,F), (F,C) since they are in the same set.

Kruskal’s Algorithm

We pop the rest of the edges and ignore them all because now all
vertices are in one set.

Kruskal’s Algorithm

We have created an MST → total sum of all edges is the smallest possible on this
graph.

Kruskal’s Algorithm
KruskalMST(G):
DisjointSets forest
foreach (Vertex v : G):
forest.makeSet(v)

PriorityQueue Q // min edge weight
foreach (Edge e : G):
Q.insert(e)

Graph T = (V, {})

while |T.edges()| < n-1:
Vertex (u, v) = Q.removeMin()
if forest.find(u) != forest.find(v):

T.addEdge(u, v)
forest.union(forest.find(u),

forest.find(v))

return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Stopping condition:
|T.edges()| < n-1

Worst case:
We visit every edge

Kruskal’s Algorithm

Graph can have multiple spanning trees => it can have

multiple minimum spanning trees, but there will always be

at least one minimum spanning tree.

Kruskal’s Algorithm

Priority Queue: Heap Sorted
Array

Building
:6-8 O(m) O(m lg m)

Each removeMin
:13 O(lg m) O(1)

KruskalMST(G):
DisjointSets forest
foreach (Vertex v : G):
forest.makeSet(v)

PriorityQueue Q // min edge weight
foreach (Edge e : G):
Q.insert(e)

Graph T = (V, {})

while |T.edges()| < n-1:
Vertex (u, v) = Q.removeMin()
if forest.find(u) != forest.find(v):

T.addEdge(u, v)
forest.union(forest.find(u),

forest.find(v))

return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Lines 2-4: O(n)
Line 10: O(n)
Line 13: loop will run m times;
Line 14-17: O(1)

Priority Queue: Heap Sorted
Array

Building
:6-8 O(m) O(m lg n)

Each removeMin
:13 O(lg n) O(1)

! = #(%!) <= (∗ %!
… log ./ 0% .%(120/.%3 45%(6.7%…

lg(!) <= lg((∗ %!)
<= lg(() + 2lg(%)

Kruskal’s Algorithm - total running time:

Priority Queue:
Total Running Time

Heap !(# + %) + !(% lg #)
Sorted Array !(# + % lg #) + !(%)

!(# + %) for set up with heap
!(# + % lg #) for set up with sorted array.

Partition Property
Consider an arbitrary partition of the vertices on G
into two subsets U and V.

A

C

D

E

B

F

8 4
2

7 12

39
5

U V

Let e be an edge of
minimum weight across
the partition.

Then e is part of some
minimum spanning tree.

e

Partition Property
The partition property suggests an algorithm:

A
C

D E

B

F G

H16

5

5

2
15

16

10

11

8

912

4

17
13

9

Prim’s Algorithm PrimMST(G, s):
Input: G, Graph;

s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin()
T.add(m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
p[v] = m

return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

2

5

15

16

7

12

9

13

118

Prim’s Algorithm PrimMST(G, s):
Input: G, Graph;

s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin()
T.add(m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
p[v] = m

return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

A ∞

B ∞

C ∞

D ∞

E ∞

F ∞

Prim’s Algorithm
Algorithm logic:
Choose an arbitrary starting point and set its distance to 0.
Pop the starting vertex from the heap and update the distance/predecessor of
adjacent vertices.

Prim’s Algorithm
We pop A and update adjacent vertices B, D, and F.
Next: remove minimum element from the heap and add the edge to the MST

Prim’s Algorithm
Next, we pop a vertex with the smallest distance and update adjacent vertices.
However, we update vertices only if the distance is smaller than the current.

Prim’s Algorithm
Next: remove minimum element from the heap and add the edge to the MST
We will add edge (D, B)

Prim’s Algorithm
Next: pop a vertex with the smallest distance, update adjacent vertices if
needed, and add the edge with the smallest distance.
These steps are repeated until the heap is empty .

Prim’s Algorithm
we pop D and we update all its adjacent vertices F, E, and C

Prim’s Algorithm
The next vertex with smallest distance is E. We add the edge from D to E.

Prim’s Algorithm
pop E and we only update C, because F’s current distance is smaller than the
one from E to F.

Prim’s Algorithm
• The shortest distance is from D to F, so we add that edge to the graph.
• We pop 9 and we don’t have anything to update because all neighboring

edges have been added to the graph.
•

Prim’s Algorithm
• Finally, we pop C and add an edge from E to C. After this step the heap is

empty and we are done.

Prim’s Algorithm – Runtime analysis
PrimMST(G, s):
Input: G, Graph;

s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin()
T.add(m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
p[v] = m

return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

• Lines 6 to 10: O(n)
• Lines 12 - 15: O(n)
• 15: loop O(n) :
• Line 16: log(n) (remove)
• Line 17: O*(n) (adj. matrix)
• ! "!

• Running 18-19 lines n
times: O(m)

• 20-22: Lg(n) (restoring
heap property)

• !("! +% lg ")

Prim’s Algorithm – Runtime analysis
• !(#! +% lg #)
• The reason we have #! in the running time is because adding a vertex takes

O(n). Therefore, we consider adjacency list → 16-17 will run in # log(#)

How can we reduce the cost of updating? - We can use an unsorted array.
Line 16 → remove takes O(n) because we need to loop over the whole array to
find the vertex to remove.
Line 17 → O(n) as previously explained.
Lines 19 to 22 → will now take O(m) because we don’t need to update anything,
we are just looping over edges.
Total running time will be O(#!).

Based on the analysis, heap with the adjacency matrix gives worst
running time;

• Case 1: the data is sparse → use (heap + adj list) and the running time will
be O(!"#$(!)) (!~()

• Case 2: the data is dense → use (unsorted array + adj matrix/list) and the
running time will be O(!!). (~!!

MST Algorithm Runtime:
•Kruskal’s Algorithm:

O(n + m lg(n))

•What must be true about the connectivity of a graph
when running an MST algorithm?
Graph is a connected graph.

• How does n and m relate?
! ≥ #− % → ' # = '(#)

Running time: ! lg $

•Prim’s Algorithm:
O(n lg(n) + m lg(n))

Fibonacci heap
Decrease key operation in Fibonacci heap takes O(1)* time.

If we use Fibonacci heap for our algorithm, updated value will take O(1) time, since
we are always decreasing key.

Adj. List with Fibonacci heap: ! " lg " +& → ()*+,*+ -.""/"0 +/&, (1- 234

Dijkstra’s Algorithm
DijkstraSSSP(G, s):
foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin()
T.add(u)
foreach (Vertex v : neighbors of u not in T):
if d[m] + cost(m, v) < d[v]:
d[v] = d[m] + cost(m, v)
p[v] = m

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

7

A
C

D
E

B

F G

H7

5
4

10

5

3

6

25

4

3

Choose an arbitrary starting point and set its distance to 0.

Starting point A.

We pop A and update adjacent vertices B and F. Notice: edges are directed

add an edge to the node with the smallest distance

Pop a vertex with the smallest distance and update adjacent vertices only if the
distance from the start is smaller than the current d.

Add an edge to the node with the smallest path

Pop and update if needed:

Add the edge:

Pop and update if needed:

Add the edge:

Pop and update (nothing was updated)

Add the edge, pop D and update (nothing was updated)

Add the edge, pop C and update

Add the edge from C to H and pop H. heap becomes empty

The shortest path from A to H is 21.
The time to find this information is O(1).

What is the path from A to H?
Start at H and trace back the
predecessor nodes → A-B-C-H

If there is no path to a particular vertex, we will have infinity as distance.

The shortest path will be A-C-D-E-F-G-H-B instead of A-B
because the first path has length 7 and the second path has
length 10.

If we want to get the most direct path instead of the shortest
path, we can adjust edge weights.
For example, we can add 1 to all edges. In that case, path A-C-
D-E-F-G-H-B will be of length 14, while path A-B will be 11 and
Dijkstra would pick A-B.

When there is a tie in path lengths, it is up to us to decide how we want to
handle that.

Can Dijkstra’s algorithm handle undirected graphs?
Yes, it can. It will not go back or in loop because that will increase the path
length.

Can Dijkstra’s algorithm handle graph with negative cycles?
No, because negative weight cycle doesn’t have defined shortest path. We can
always find a shorter path which leads to negative infinity.

Dijkstra’s algorithm can handle graphs with negative edges, but no negative
cycles - it will finish, there will be no infinite loop. However, it will not produce
the shortest path.

Running time of Dijkstra’s algorithm

Remember, we built Dijkstra’s algorithm on top of Prim’s algorithm.

We only added two lines of code which take O(1).

Therefore, Dijkstra’s running time is the same as Prim’s.

Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alterative to Dijkstra
in the presence of negative-weight edges (not
negative weight cycles).

FloydWarshall(G):
Let d be a adj. matrix initialized to +inf
foreach (Vertex v : G):
d[v][v] = 0

foreach (Edge (u, v) : G):
d[u][v] = cost(u, v)

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex w : G):
if d[u, v] > d[u, w] + d[w, v]:
d[u, v] = d[u, w] + d[w, v]

6
7
8
9
10
11
12
13
14
15
16

B

A C

D

3
-1

2

4

-2

Algorithm setup:
• Maintain a table (matrix) that has the shortest known paths

between vertices.
• Initialize the table with three possible values:
• self edges to 0
• edges by edge weights
• unknown paths to infinity

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0

12
13
14
15
16

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

A
C

D

B

3
-1

2

4

-2Can we add a vertex in between to vertices to make
the distance shorter.

B C B A CVS

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0

A
C

D

B

3
-1

2

4

-2

Let us consider k=A:
B C
B D

4

3

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

12
13
14
15
16

B CAvs. +∞
B DA +∞vs.

C B
C D

+∞

-2
C BAvs. +∞
C DA +∞vs.

D B
D C

+∞ D BAvs.
D CAvs.+∞

2+(-1) = 1
+∞

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0

A
C

D

B

3
-1

2

4

-2

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

12
13
14
15
16

1

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0

A
C

D

B

3
-1

2

4

-2

Let us consider k=B:
A C
A D

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

12
13
14
15
16

A CBvs.
A DBvs.

C A
C D

C ABvs.
C DBvs.

D A
D C

D ABvs.
D CBvs.

1

D BA

+∞ 1 + 4 = 5

This edge does not actually gets
created. Values in the matrix
saves information about updated
path values.

Floyd-Warshall Algorithm

Running time:
!(#!)

Floyd-Warshall’s algorithm explores all possible paths to determine the
shortest path. If we explored all possible paths with Dijkstra’s
algorithm, the running time would have been much worse than !!.

When Tree has a cycle…
Good Luck on exam!

Thank you for amazing
artworks!

