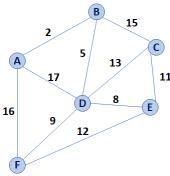


#38: Dijkstra's Algorithm

April 23, 2018 · Wade Fagen-Ulmschneider

Prim's Algorithm (Minimum Spanning Tree)



Pseudocode for Prim's MST Algorithm		
1	PrimMST(G, s):	
2	<pre>Input: G, Graph;</pre>	
3	s, vertex in G, starting vertex of algorithm	
4	Output: T, a minimum spanning tree (MST) of G	
5		
6	foreach (Vertex v : G):	
7	d[v] = +inf	
8	p[v] = NULL	
9	d[s] = 0	
10		
11	PriorityQueue Q $//$ min distance, defined by d[v]	
12	Q.buildHeap(G.vertices())	
13	Graph T // "labeled set"	
14		
15	repeat n times:	
16	<pre>Vertex m = Q.removeMin()</pre>	
17	T.add(m)	
18	foreach (Vertex v : neighbors of m not in T):	
19	<pre>if cost(v, m) < d[v]:</pre>	
20	d[v] = cost(v, m)	
21	p[v] = m	
22		
23	return T	

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

Running Time of MST Algorithms

- Kruskal's Algorithm:
- Prim's Algorithm:

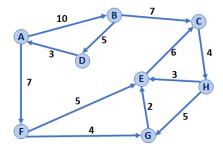
Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between **n** and **m**?

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or $O(1)^*$. How does that change Prim's Algorithm runtime?

Shortest Path Home:

Dijkstra's Algorithm (Single Source Shortest Path)

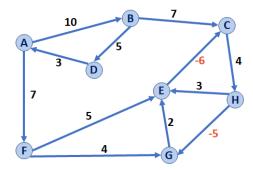


Dijkstra's Algorithm Overview:

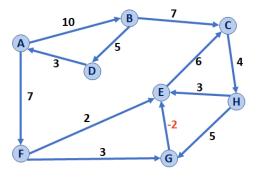
- The overall logic is the same as Prim's Algorithm
- We will modify the code in only two places both involving the update to the distance metric.
- The result is a directed acyclic graph or DAG

```
Pseudocode for Dijkstra's SSSP Algorithm
   DijkstraSSSP(G, s):
2
      Input: G, Graph;
             s, vertex in G, starting vertex of algorithm
3
     Output: T, DAG w/ shortest paths (and distances) to s
 5
 6
      foreach (Vertex v : G):
7
       d[v] = +inf
8
       p[v] = NULL
9
     d[s] = 0
10
11
                       // min distance, defined by d[v]
      PriorityQueue Q
12
     Q.buildHeap(G.vertices())
13
                        // "labeled set"
      Graph T
14
15
      repeat n times:
16
        Vertex m = Q.removeMin()
17
        T.add(m)
18
        foreach (Vertex v : neighbors of m not in T):
19
                                     < d[v]:
20
            d[v] =
21
            p[v] = m
22
23
      return T
```

Dijkstra: What if we have a negative-weight cycle?



Dijkstra: What if we have a minimum-weight edge, without having a negative-weight cycle?



Dijkstra makes an assumption:

Dijkstra: What is the running time?

CS 225 – Things To Be Doing:

- 1. Final Exam runs Thursday, May 3 Thursday, May 10
- 2. MP7 is released; EC due tonight, Monday, April 23th
- **3.** Final lab, **lab_ml**, released Wednesday
- **4.** This week is the last week of POTDs (last POTD is Friday!)