cS 2 #30: Disjoint Sets
7 N\ " -
2 5] April 4,2018 - Wade Fagen-Ulmschneider

Disjoint Sets
Let R be an equivalence relation. We represent R as several disjoint
sets. Two key ideas from Monday:
e Each element exists in exactly one set.
e [Every set is an equitant representation.
o Mathematically: 4 € [0]r 2 8 € [0]r
o Programmatically: find(4) == find(8)

Building Disjoint Sets:
» Maintain a collection S = {so, si, ... Sk}
« Each set has a representative member.
« ADT:
void makeSet(const T & t);
void union(const T & k1, const T & k2);
T & find(const T & k);

[o] [1] [2] (3] [4] [5] [6] (71 [8] [9]

Impl #2 (continued):

t t t t
o)) &) ol | 01 | 1o | 0
[o] [1] [2] [3]
[o] [1] [2] [3]
[o] [1] [2] [3]
Example:
259 ‘ @ (o148 36
t t t t
(5 (7 (t_l) ('f‘)
/\ " 4N o
(o) (8)
e @ -

4 8 5 6 -1 -1 -1 -1 4 5
[o] [1] [3] [4] (5] (6] [71 [8] [9]
...where is the error in this table?

,_
N
—

Operation: find(k)

Operation: union(ki, k2)

Implementation #2:
* Continue to use an array where the index is the key
* The value of the array is:
+ -1, if we have found the representative element
+ The index of the parent, if we haven’t found the rep.
element

Implementation — DisjointSets::find

DisjointSets.cpp (partial)
int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return _find(s[i]); }

}

o= Wik

What is the running time of £ind?

What is the ideal UpTree?

Implementation — DisjointSets::union

DisjointSets.cpp (partial)

[VV RN S

}

void DisjointSets: :union(int rl, int r2) ({

How do we want to union the two UpTrees?

Smart Union Strategy #1:
Idea: Keep the height of the tree as small as possible!

Metadata at Root:

After union(4, 7):

Building a Smart Union Function

t
()
(8) (9]

- ..:—b

The implementation of this visual model is the following:

6 | 6 | 6 |8 10 | 7 717 |45
[o] [1] [2] [3] [4] [5] [6] [71 [8] [o] [[10] | [11]
Smart Union Strategy #2:
Idea: Minimize the number of nodes that increase in height.
(Observe that the tree we union have all their nodes gain in height.)
Metadata at Root:
After union(4, 7):
6 6 6 8 10 7 ~ ~ 4 5

[o] [1] [2] [3] [4] [5] [6] [7] (8] [9] [10]

[11]

6

6

6

8

-1

10

7

-1

7

7

4

[o]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

What are possible strategies to employ when building a “smart

union”?

Smart Union Implementation:

DisjointSets.cpp (partial)

}

1 | void DisjointSets: :unionBySize (int rootl, int root2) {
2 int newSize = arr [rootl] + arr [root2];

3

4 if (arr_[rootl] < arr_[root2]) {

5 arr [root2] = rootl; arr_ [rootl] = newSize;

6 } else {

7 arr [rootl] = root2; arr [root2] = newSize;

8

9

}

CS 225 — Things To Be Doing:

1. Theory Exam 3 is on-going

2. MP6 released; Extra Credit deadline on Monday, April gth
3. lab_heaps released today

4. Daily POTDs are ongoing!

