CS/Z\ #29: Disjoint Sets Intro
2 5 April 2,2018 - Wade Fagen-Ulmschneider

Building a Heap with an Array of Data
e Assumption: Data already exists as an unsorted array in
memory.

e Goal: Organize the data as a minHeap as fast as possible.

-|B|U|I|L| D|H E|A| P | N|O| W

Solutions:
1. Sort the array, O(n Ig(n))
2. Use Heap::insert for every element, O(n 1g(n))
3. Use a heapifyDown strategy on half the array:

Heap.cpp (partial)

Define S(h):

Let S(h) denote the sum of the heights of all nodes in a complete tree

of height h.
S(o) =
S(1) =
S(2) =
S(h) =

Proof of S(h) by Induction:

Finally, finding the running time:

template <class T>
void Heap<T>::buildHeap () {
for (unsigned i = _parent(size_); i > 0; i--) {
heapifyDown (i) ;
}

o WNRL

}

Theorem: The running time of buildHeap on array of size n is:

Strategy:

Heap Sort

° Algorithm:

(2] (o,
@ @ @ @©.

0000 3

Running time?

Why do we care about another sort?

Disjoint Sets Implementation #2:

Let R be an equivalence relation on us where (s, t) € Rif s and t have « Continue to use an array where the index is the key
the same favorite among;: * The value of the array is:
{ , , , , , ¥ » -1, if we have found the representative element
+ The index of the parent, if we haven’t found the rep.
element
t t t t
AVAIET, ol | o [@ | [
Examples:
[o] [1] [2] [3]
- [o] [1] [2] (3]
(o148 36
R [o] [1] [2] [3]

Building Disjoint Sets: Example:
* Maintain a collection S = {so, s, ... Sk} e o
+ Each set has a representative member. 259 @ Q 0148 36
+ ADT: I R
void makeSet(const T & t); ~ A A N
void union(const T & ki1, const T & k2); 7\ AR - '\5 |
T & find(const T & k); DD (o) (s -

=)

(014) @ (356 4 | 8 -1 | -1 | -1 | -1] 4|5
—_— - o~ [o] [1] : : [4] [5] [6] [7] [8] [9]

...where is the error in this table?

,_
\]
—
—
o
I

CS 225 — Things To Be Doing:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] MP5 deadline tonight Monday, April 2nd
Theory Exam 3 starts tomorrow (Tuesday, April 3rd)
lab_heap starts on Wednesday

Daily POTDs are ongoing!

Operation: find(k)

hepr

Operation: union(ki, k2)

