

#4: Heap Memory

January 24, 2018 · Wade Fagen-Ulmschneider

Puzzle from Monday

puzzle.cpp
4

5

6

7

8

9

10

11

12

13

14

15

Sphere *CreateUnitSphere() {

 Sphere s(1);

 return &s;

}

int main() {

 Sphere *s = CreateUnitSphere();

 someOtherFunction();

 double r = s->getRadius();

 double v = s->getVolume();

 return 0;

}

Takeaway:

Heap Memory:
As programmers, we can use heap memory in cases where the lifecycle
of the variable exceeds the lifecycle of the function.

1. The only way to create heap memory is with the use of the
new keyword. Using new will:







2. The only way to free heap memory is with the use of the
delete keyword. Using delete will:





3. Memory is never automatically reclaimed, even if it goes out of
scope. Any memory lost, but not freed, is considered to be
“leaked memory”.

heap1.cpp

4

5

6

7

8

9

int main() {

 int *p = new int;

 Sphere *s = new Sphere(10);

 return 0;

}

Stack Value Heap Value
0x42020 

0x42018 

0x42010 

0x42008 

0x42000 

0xffff00f0 

0xffff00e8 

0xffff00e0 

0xffff00d8 

0xffff00d0 

heap2.cpp

4

5

6

7

8

9

10

11

int main() {

 Sphere *s1 = new Sphere();

 Sphere *s2 = s1;

 s2->setRadius(10);

 delete s2;

 delete s1;

 return 0;

}

Stack Value Heap Value
0x42020 

0x42018 

0x42010 

0x42008 

0x42000 

0xffff00f0 

0xffff00e8 

0xffff00e0 

0xffff00d8 

0xffff00d0 

Copying Memory – Deep Copy vs. Shallow Copy

copy.cpp
5

6

7

8

9

10

11

12

13

14

15

int i = 2, j = 4, k = 8;

int *p = &i, *q = &j, *r = &k;

k = i;

cout << i << j << k << *p << *q << *r << endl;

p = q;

cout << i << j << k << *p << *q << *r << endl;

*q = *r;

cout << i << j << k << *p << *q << *r << endl;

Consider how each assignment operator changes the data:

 Type of LHS Type of RHS Data Changed?

Line 8-9

i = j = k =
p = q = r =

Line 11-12

i = j = k =
p = q = r =

Line 14-15

i = j = k =
p = q = r =

heap-puzzle1.cpp

5

6

7

8

9

10

11

12

13

14

15

16

int *x = new int;

int &y = *x;

y = 4;

cout << &x << endl;

cout << x << endl;

cout << *x << endl;

cout << &y << endl;

cout << y << endl;

cout << *y << endl;

heap-puzzle2.cpp
5

6

7

8

9

10

11

12

13

14

int *p, *q;

p = new int;

q = p;

*q = 8;

cout << *p << endl;

q = new int;

*q = 9;

cout << *p << endl;

cout << *q << endl;

heap-puzzle3.cpp

5

6

7

8

9

10

11

12

13

14

int *x;

int size = 3;

x = new int[size];

for (int i = 0; i < size; i++) {

 x[i] = i + 3;

}

delete[] x;

joinSpheres.cpp

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

/*

 * Creates a new sphere that contains the exact volume

 * of the two input spheres.

 */

Sphere joinSpheres(Sphere s1, Sphere s2) {

 double totalVolume = s1.getVolume() + s2.getVolume();

 double newRadius = std::pow(

 (3.0 * totalVolume) / (4.0 * 3.141592654),

 1.0/3.0

);

 Sphere result(newRadius);

 return result;

}

CS 225 – Things To Be Doing:

1. Exam 0 is ongoing – ensure you’re signed up for it!
2. Finish up MP1 – Due Monday, Jan. 29 at 11:59pm
3. Complete lab_debug this week in lab sections (due Sunday)
4. POTDs are released daily, worth +1 extra credit point! 

