Graphs

CS 225 - Fall 2025

Mattox Beckman / Based on slides from Brad Solomon

Objectives

Introduction

Objectives

- · Define vocabulary needed to describe graphs
- · Implement a graph using an edge list

· Informal Early Feedback in the Discord

A graph G is a set V, E of vertices and edges

A graph G is a set V, E of vertices and edges

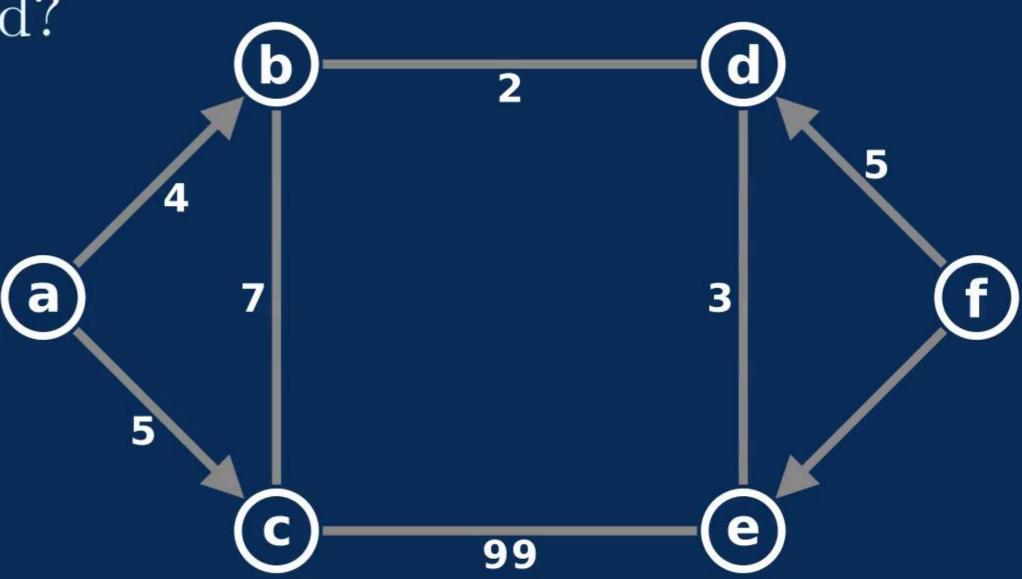
- · Vertices also known as nodes.
- · Can contain data; key-values; weights; etc.

A graph G is a set V, E of vertices and edges

- · Vertices also known as nodes.
- · Can contain data; key-values; weights; etc.
- · Edges connect nodes; defined by their endpoints.
- · Edges can be directed or undirected, weighted or unweighted

Introduction

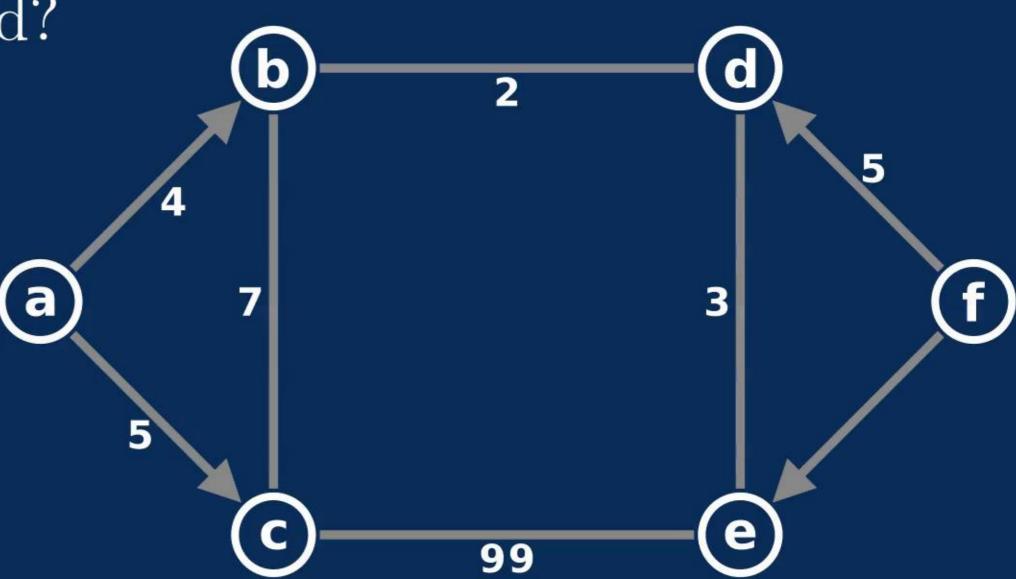
Which edges are weighted?



Introduction

Which edges are weighted?

· All but f-e.



Introduction

Which edges are weighted? b · All but f-e. Which edges are directed? 99

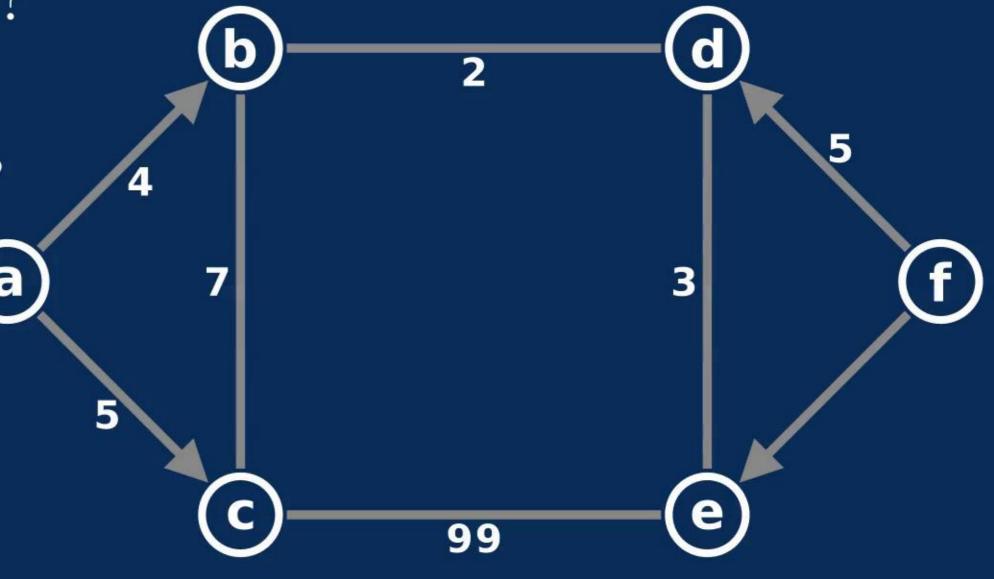
Introduction

Which edges are weighted?

· All but f-e.

Which edges are directed?

· a-b, a-c, f-d, f-e



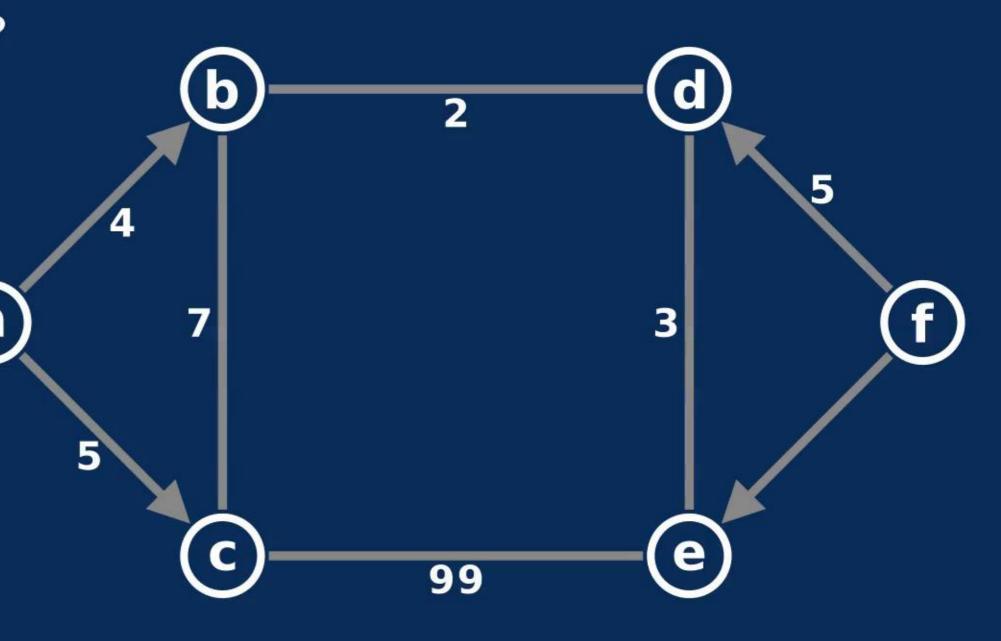
Introduction

Which edges are weighted?

· All but f-e.

Which edges are directed?

· a-b, a-c, f-d, f-e



Uses of Graphs

Introduction

For these: what are the vertices and what are the edges?

- · Flight routes between cities
- · Legal Game moves
- · Friendship connections
- · Subway station map
- · Prerequisite maps for classes

Degree: number of incident edges

 $\cdot \deg(a) = 4, \deg(g) = 2$

Adjacent: connected by edge

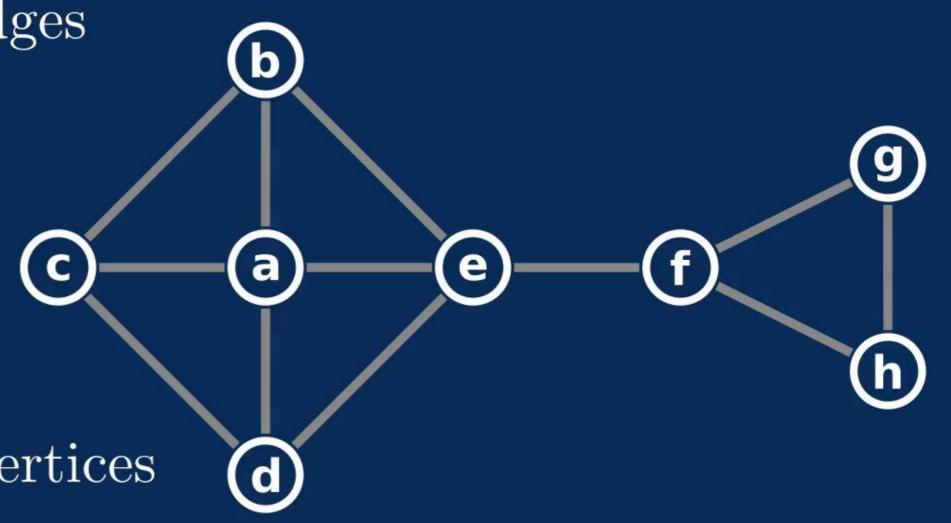
- · c is adjacent to a
- · c is not adjacent to f

Path: sequence of connected vertices

· e.g. c-a-e-f

Cycle: path that returns to start

· e.g. f-g-h



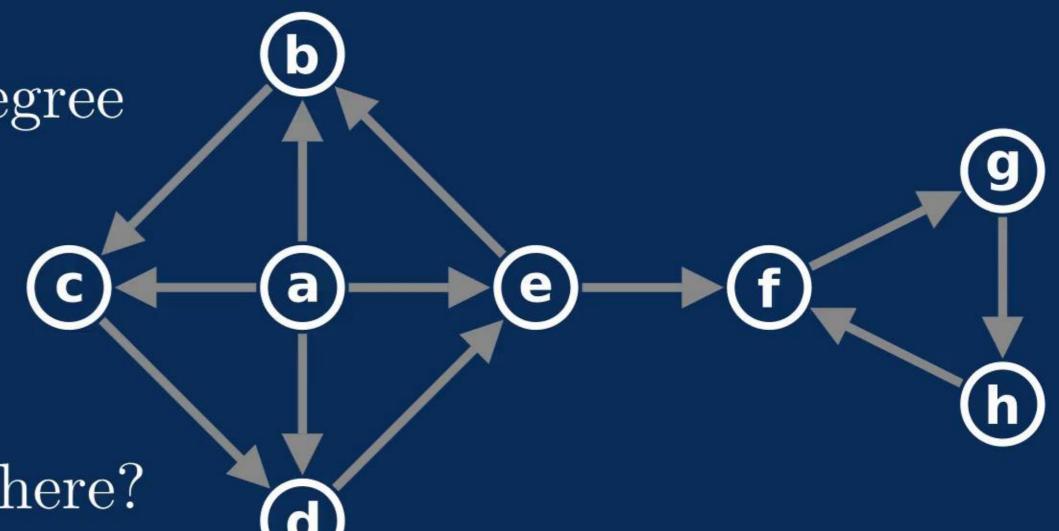
Vocabulary

Directed Graph:

- · In Degree and Out Degree
- · a has out-degree of 4
- · f has in-degree 2
- f has out-degree 1

Reachable: can I get there?

· g is reachable from a, but a is not reachable from g



Simple Graphs

Introduction

Self Loops are possible

Multiple Edges are possible

We don't usually like those.

Simple Graph:

- · No self loops!
- · No multiple edges!

A subgraph G' of G:

$$G' = (V', E')$$

$$\cdot V' \subset V$$

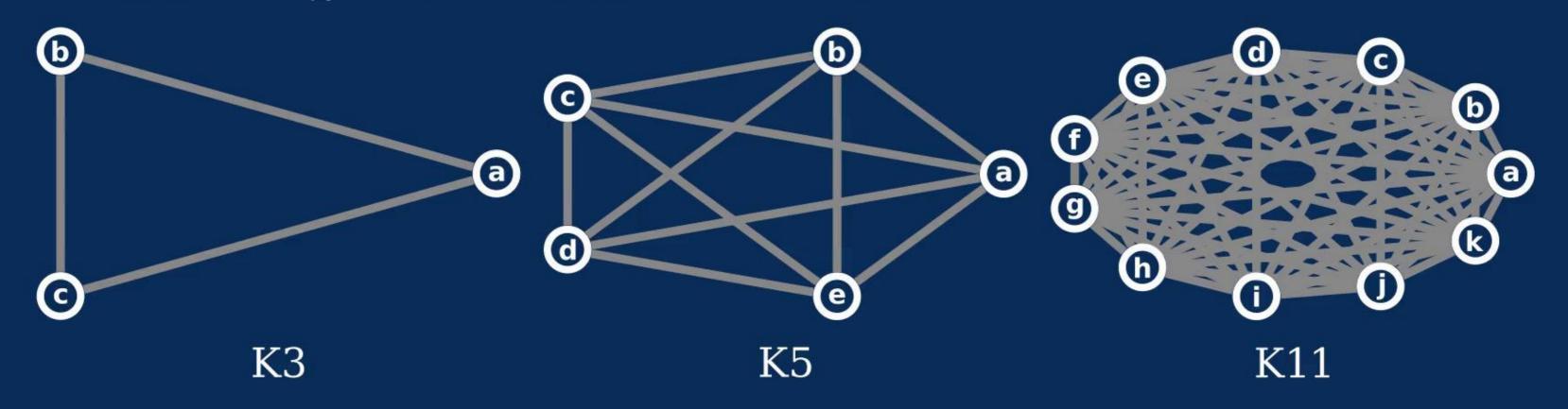
$$\cdot E' \subset E$$

if $(v_1, v_2) \in E$, then $v_1 \in E$ and $v_2 \in V'$

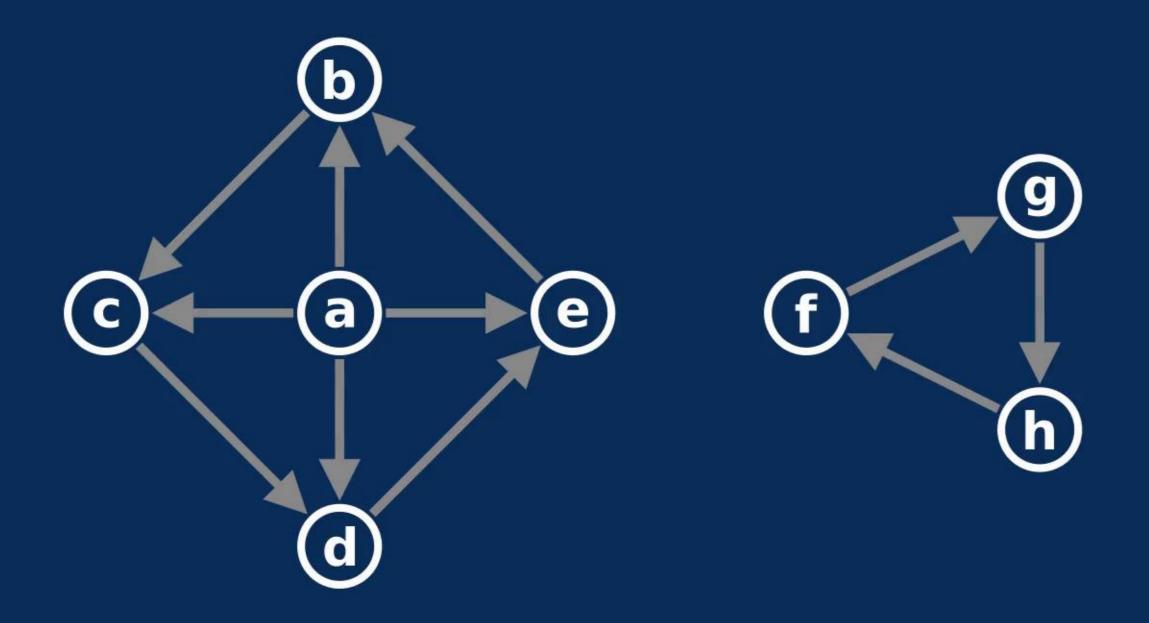
Complete Graph:

$$\forall v_1, v_2 \in V.(v_1, v_2) \in E$$

Name K_n for n number of nodes.



A graph can be disconnected!

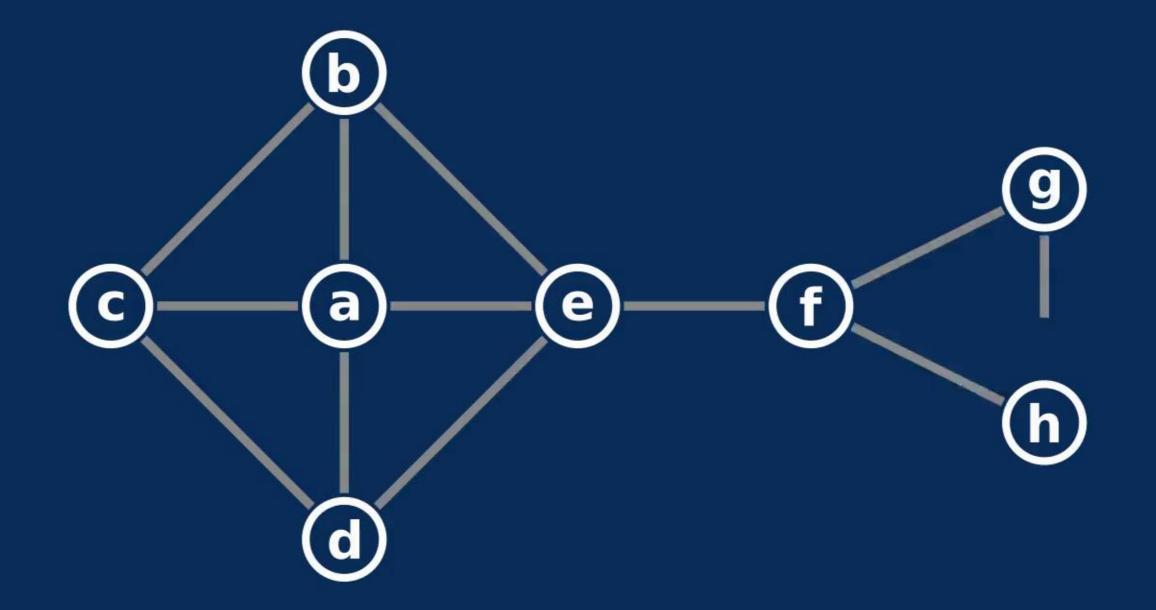


Connected Graphs

Introduction

Every connected graph has a spanning tree.

There may be more than one!

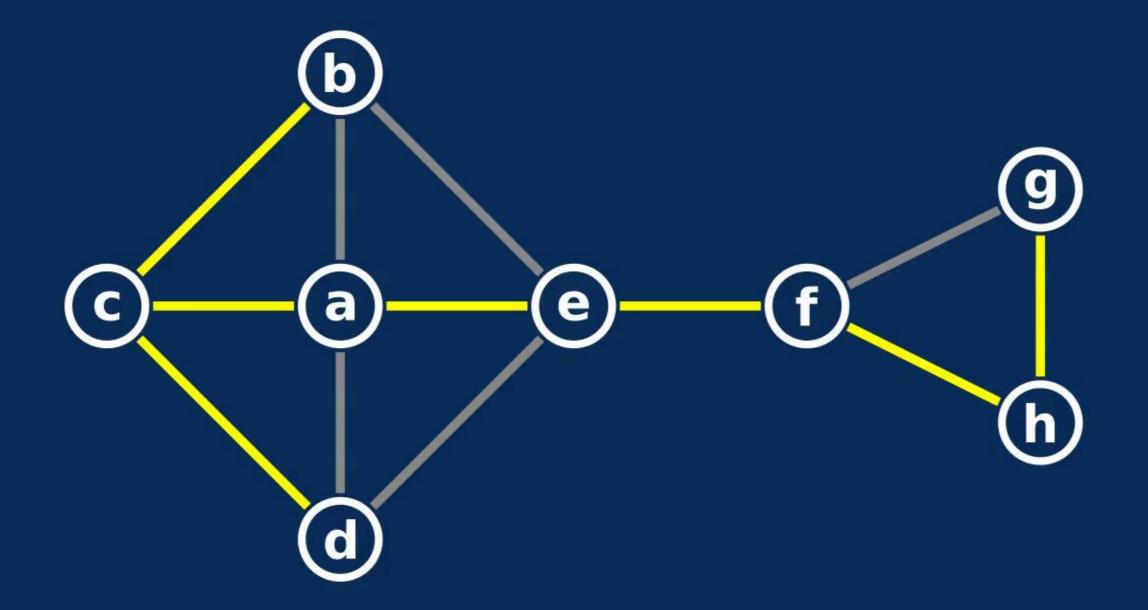


Connected Graphs

Introduction

Every connected graph has a spanning tree.

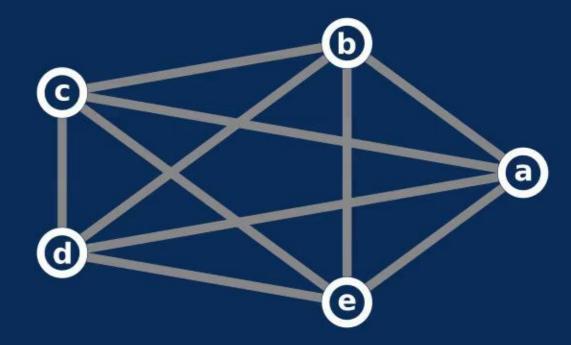
There may be more than one!



Some Mathy Things

What do we need for the runtime of graphs?

- · Need |V| = n and also |E| = m
- So. How many edges can there be (min, max)?
- \cdot min = 0; completely disconnected graph
- $\cdot \max = \mathcal{O}(n^2)$; complete graph



Implementation

Graph ADT

Modification

- insertVertex(K key)
- · insertEdge(Vertex v1, Vertex v2, K Key)
- removeVertex(K key)
- removeEdge(Vertex v1, Vertex v2)

Need storage for vertices and keys. Maybe weights.

Graph ADT

Implementations

Query

- getEdges(Vertex v)
- · areAdjecent(Vertex v1, Vertex v2)
- · origin(Edge e)
- · destination(Edge e)

Three common ways to implement graphs

- · Edge List (vector of edges)
- · Adjacency List (vector of lists)
- · Adjacency Matrix (2d vector)

How do you pick?

Three common ways to implement graphs

- · Edge List (vector of edges)
- · Adjacency List (vector of lists)
- · Adjacency Matrix (2d vector)

How do you pick?

Data Representation Affects the Questions You Can Ask

How To Do It

What needs to go in an edge?

How To Do It

What needs to go in an edge?

· Source and Destination Vertices

What needs to go in an edge?

- · Source and Destination Vertices
- · Possibly a weight

How To Do It

What needs to go in an edge?

- · Source and Destination Vertices
- · Possibly a weight
- · Possibly a key

How To Do It

What needs to go in an edge?

- · Source and Destination Vertices
- · Possibly a weight
- · Possibly a key

What about direction?

What needs to go in an edge?

- · Source and Destination Vertices
- · Possibly a weight
- · Possibly a key

What about direction?

· Undirected graphs store edges twice.

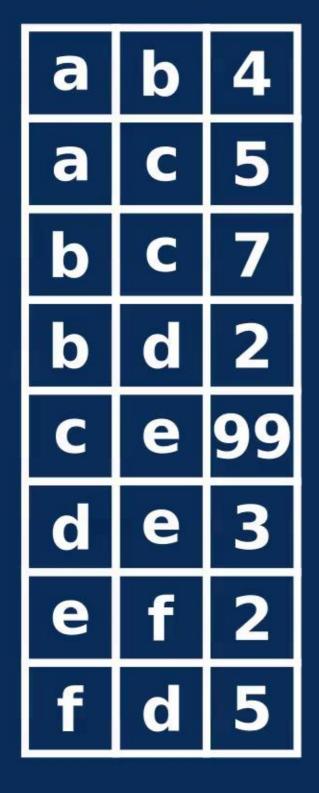
How To Do It

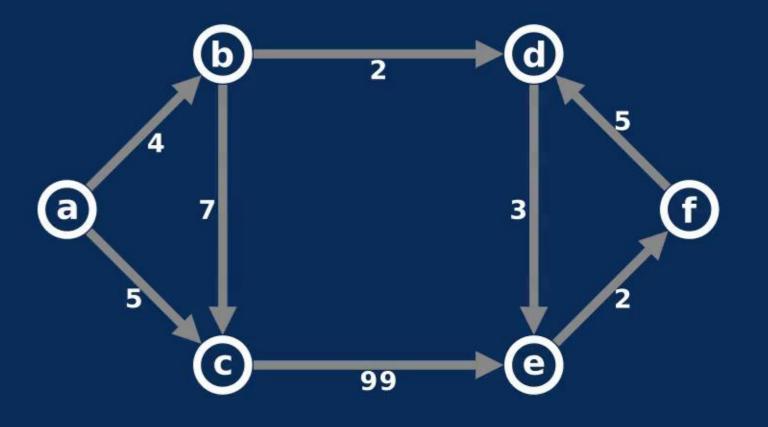
What needs to go in an edge?

- · Source and Destination Vertices
- · Possibly a weight
- · Possibly a key

What about direction?

· Undirected graphs store edges twice.





a b 4

b | c | 7

b | d | 2

c e 99

d e 3

e | f | 2

f d 5

How long do things take?

insertVertex(K key)

insertEdge(Vertex v1, Vertex v2, K Key)

removeVertex(K key)

removeEdge(Vertex v1, Vertex v2)

a b c d e f

How long do things take?

insertVertex(K key)

 $\cdot \mathcal{O}(1)$

insertEdge(Vertex v1, Vertex v2, K Key)

removeVertex(K key)

removeEdge(Vertex v1, Vertex v2)

a b c d e f

How long do things take?

insertVertex(K key)

 $\cdot \mathcal{O}(1)$

insertEdge(Vertex v1, Vertex v2, K Key)

 $\cdot \mathcal{O}(m)$

removeVertex(K key)

removeEdge(Vertex v1, Vertex v2)

a b c d e f

How long do things take?

insertVertex(K key)

 $\cdot \mathcal{O}(1)$

insertEdge(Vertex v1, Vertex v2, K Key)

 $\cdot \mathcal{O}(m)$

removeVertex(K key)

· $\mathcal{O}(m)$ (need to remove edges)

removeEdge(Vertex v1, Vertex v2)

a b c d e f

How long do things take?

insertVertex(K key)

 $\cdot \mathcal{O}(1)$

insertEdge(Vertex v1, Vertex v2, K Key)

 $\cdot \mathcal{O}(m)$

removeVertex(K key)

• $\mathcal{O}(m)$ (need to remove edges)

removeEdge(Vertex v1, Vertex v2)

 $\cdot \mathcal{O}(m)$ (need to remove edges)

a b c d e f

How long do things take?

getEdges(Vertex v)

areAdjacent(Vertex v1, Vertex v2)

origin(Edge e)

a b c d e f

origin(Edge e)

Edge List

How long do things take? getEdges(Vertex v) $\cdot \mathcal{O}(m)$ - Check both start and end! areAdjacent(Vertex v1, Vertex v2)

origin(Edge e)

Edge List

How long do things take? getEdges(Vertex v) $\cdot \mathcal{O}(m) \text{ - Check both start and end!}$ areAdjacent(Vertex v1, Vertex v2) $\cdot \mathcal{O}(m)$

a b c d e f

How long do things take?

getEdges(Vertex v)

 \cdot $\mathcal{O}(m)$ - Check both start and end! areAdjacent(Vertex v1, Vertex v2)

 $\cdot \mathcal{O}(m)$

origin(Edge e)

· $\mathcal{O}(m)$ or $\mathcal{O}(1)$

a b c d e f

Pros

- · Compact representation
- · Edge iteration is easy
- · Good for Minimum Spanning Trees

Cons

- · DFS and BFS are slow!
- · Vertex oriented things are slow

Next Time

· Adjacency List and Adjacency Matrix