Graphs

CS 225 - Ball 2025

Mattox Beckman / Based on slides from Brad Solomon

LSR5 ()bj ectives Introduction

Objectives
- Define vocabulary needed to describe graphs

- Implement a graph using an edge list

- Informal Early Feedback in the Discord

CS 225 Definition Introduction

A graph (G is a set V, E of vertices and edges

CS 225 Definition Introduction

A graph G is a set V, E/ of vertices and edges

- Vertices also known as nodes.
- Can contain data; key-values; weights; etc.

CS 225 Definition Introduction

A graph G is a set V, E of vertices and edges

- Vertices also known as nodes.
- Can contain data; key-values; weights; etc.

- Edges connect nodes; defined by their endpoints.

. Edges can be directed or undirected, weighted or unweightec

€S 225 Examp]e Graph Introduction

Which edges are weighted?
®——@

O——@

€S 225 Example Graph Introduction

Which edges are weighted?
®——@

-~ All but f-e. /' v\
S
4

O @

€S 225 Examp]e Graph Introduction

Which edges are weighted?
®——@

- All but t-e.
Which edges are directed? /' ‘\

@ - | ©

N e

O——@

€S 225 Examp]e Graph Introduction

Which edges are weighted?
®——@

-+ All but f-e.
Which edges are directed? /' ‘\

- a-b, a-c, t-d, f-e @ 7 3 @

RN e

O @

€S 225 Examp]e Graph Introduction

Which edges are weighted?
®——@

-+ All but f-e.
Which edges are directed? /' ‘\

. a-b, a-c, t-d, t-e @ 7 3 @

RN /

O @

CS 225 Uses of Graphs Introduction

For these: what are the vertices and what are the edges?
. Flight routes between cities

- Legal Game moves

- Friendship connections

- Subway station map

. Prerequisite maps for classes

£S 225 Vocabu]ary Introduction

Degree: number of incident edges

- deg(a) = 4, deg(g) = @
Adjacent: connected by edge
c is adjacent to a @ @ @ @ |

. ¢ 1s not adjacent to { \ / @

Path: sequence of connected vertices
. e.g. c-a-e-f

Cycle: path that returns to start

. e.g. t-g-h

£S 225 Vocabu]ary Introduction

Directed Graph:

- In Degree and Out Degree @
- a has out-degree of 4 / T\ /@
- { has in-degree 2 @4—®—P@—P® l

ot N] @

Reachable: can I get there?” @

. g 1s reachable from a, but a is not reachable from g

CS 225 Simp]e Graphs Introduction

Self Loops are possible
Multiple Edges are possible
We don’t usually like those.

Sl N)
Simple Graph: @\y ®_>©

- No self loops!
- No multiple edges!

€S 225 Subgraphs Introduction

A subgraph G’ of G" @ @
e (V’,,E’)

- VicV

©

! !

- E'CE 0, e O,
©

1

®

®

if (v1,v2) € E, then v1 € F and vy € V'

CS 225 Complete Graphs Introduction

Complete Graph:
Yui,ve € V.(v1,v2) € F

Name K,, for n number of nodes.

CS 225 Connected Graphs Introduction

A graph can be disconnected!

CS 225 Connected Graphs Introduction

Every connected graph has a spanning tree.

There may be more than one!

®
®
@éé—@)/ '

\ ~

@

CS 225 Connected Graphs Introduction

Every connected graph has a spanning tree.

There may be more than one!

Some Mathy Things

€S 225 Range Of E and V Some Math

What do we need for the runtime of graphs?’

- Need |V| =n and also |E| =m

So. How many edges can there be (min, max)?
- min = 0; completely disconnected graph

- max = O(n*); complete graph

Implementation

CS 225 Graph ADT Implementations

Modification
- insertVertex (K key)

. insertEdge (Vertex v1, Vertex v2, K Key)

. removeVertex(K key)

- removeEdge (Vertex vl, Vertex v2)

Need storage for vertices and keys. Maybe weights.

CS 225 Graph ADT Implementations

Query
. getEdges(Vertex v)

- areAdjecent(Vertex vl,Vertex v2)
. origin(Edge e)
. destination(Edge e)

05225 How to pick? 3 Implementations

Three common ways to implement graphs
- Edge List (vector of edges)

. Adjacency List (vector of lists)

- Adjacency Matrix (2d vector)

How do you pick?

@B 7225 How to pick? 3 Implementations

Three common ways to implement graphs
- Edge List (vector of edges)

. Adjacency List (vector of lists)

- Adjacency Matrix (2d vector)

How do you pick?

Data Representation Affects the Questions You Can Ask

CS 225 How To Do It Edge List

What needs to go in an edge”

U225

How 1o Do It Edge List

What needs to go in an edge?’

- Source and Destination Vertices

U225

How 1o Do It Edge List

What needs to go in an edge?

- Source and Destination Vertices
- Possibly a weight

CS 225 How 1o Do It Edge List

What needs to go in an edge?

- Source and Destination Vertices
- Possibly a weight

- Possibly a key

CS 225 How 1o Do It Edge List

What needs to go in an edge?

- Source and Destination Vertices
- Possibly a weight

. Possibly a key
What about direction?”

CS 225 How 1o Do It Edge List

What needs to go in an edge?

- Source and Destination Vertices
- Possibly a weight

- Possibly a key

What about direction?
- Undirected graphs store edges twice.

CS 225 How 1o Do It Edge List

What needs to go in an edge?

- Source and Destination Vertices
- Possibly a weight

- Possibly a key

What about direction?
- Undirected graphs store edges twice.

CS 225 Examp]e Edge List

Edge List

9.4)\ 4 y 4
L e --:EF,_H"
@ 55" @

Vertex List

af=|ojolala|n|o
C1CIHSICIES

£S5 225 Timing Edge List

Edge List How long do things take?
insertVertex (K key)

insertEdge (Vertex v1, Vertex v2, K Key)
removeVertex (K key)

removeEdge (Vertex v1, Vertex v2)

Vertex List

S 225 Timing Edge List

Edge List How long do things take?
insertVertex (K key)

- O(1)
insertEdge (Vertex v1, Vertex v2, K Key)

removeVertex (K key)

removeEdge (Vertex v1, Vertex v2)

Vertex List

S 225 Timing Edge List

Edge List How long do things take?
insertVertex (K key)

- O(1)
insertEdge (Vertex v1, Vertex v2, K Key)
- O(m)

removeVertex (K key)

removeEdge (Vertex v1, Vertex v2)

Vertex List

S 225 Timing Edge List

Edge List How long do things take?
insertVertex (K key)

- O(1)

insertEdge(Vertex v1, Vertex v2, K Key)
- O(m)

removeVertex (K key)

- O(m) (need to remove edges)

removeEdge (Vertex v1, Vertex v2)

Vertex List

S 225 Timing Edge List

Edge List How long do things take?
insertVertex (K key)

- O(1)

insertEdge(Vertex v1, Vertex v2, K Key)
- O(m)

removeVertex (K key)

- O(m) (need to remove edges)

removeEdge (Vertex v1, Vertex v2)

- O(m) (need to remove edges)

Vertex List

CS 225 Timing,) Edge List

Edge List How long do things take?
getEdges (Vertex v)

areAdjacent (Vertex v1, Vertex v2)
origin(Edge e)

Vertex List

CS 225 Timing,) Edge List

Edge List How long do things take?
getEdges(Vertex v)

. O(m) - Check both start and end!

areAdjacent (Vertex v1, Vertex v2)
origin(Edge e)

Vertex List

CS 225 Timing,) Edge List

Edge List How long do things take?
getEdges(Vertex v)

- O(m) - Check both start and end!
areAdjacent (Vertex v1, Vertex v2)
- O(m)

origin(Edge e)

Vertex List

CS 225 Timing,) Edge List

Edge List How long do things take?

getEdges (Vertex v)

. O(m) - Check both start and end!
areAdjacent (Vertex v1, Vertex v2)
- O(m)

origin(Edge e)

- O(m) or O(1)

Vertex List

(S 225 Tradeoffs Edge List

Pros
- Compact representation

- Edge iteration is easy
. Good for Minimum Spanning Trees

Cons
- DFS and BF'S are slow!
- Vertex oriented things are slow

Next Time
- Adjacency List and Adjacency Matrix

