Data Structures and Algorithms Bloom Filters 2

CS 225 Brad Solomon November 21, 2025

Have a great fall break!

Department of Computer Science

Learning Objectives

Review conceptual understanding of bloom filter

Review probabilistic data structures and explore one-sided error

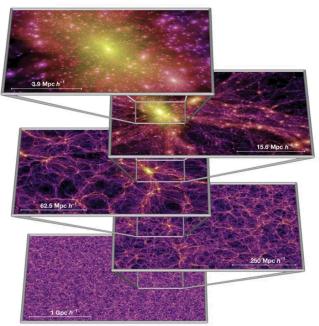
Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by Big Data (Large N)



Sky Survey Projects	Data Volume
DPOSS (The Palomar Digital Sky Survey)	3 TB
2MASS (The Two Micron All-Sky Survey)	10 TB
GBT (Green Bank Telescope)	20 PB
GALEX (The Galaxy Evolution Explorer)	30 TB
SDSS (The Sloan Digital Sky Survey)	40 TB
SkyMapper Southern Sky Survey	500 TB
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)	~ 40 PB expected
LSST (The Large Synoptic Survey Telescope)	~ 200 PB expected
SKA (The Square Kilometer Array)	~ 4.6 EB expected

Table: http://doi.org/10.5334/dsj-2015-011

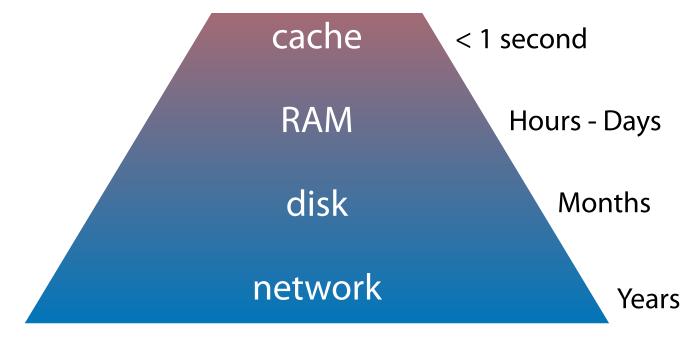
Estimated total volume of one array: 4.6 EB

Image: https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by resource limitations

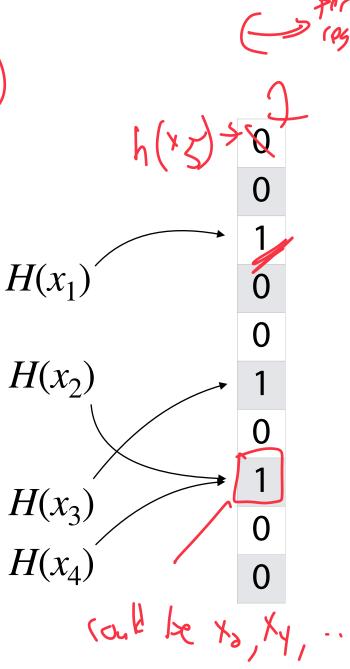


(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Bloom Filter: Insertion

- 1) Hash the input key to get its **hash value** \bigcirc
- 2) Set the bit at the hash value address to 1 () () If the bit was already one, it stays 1

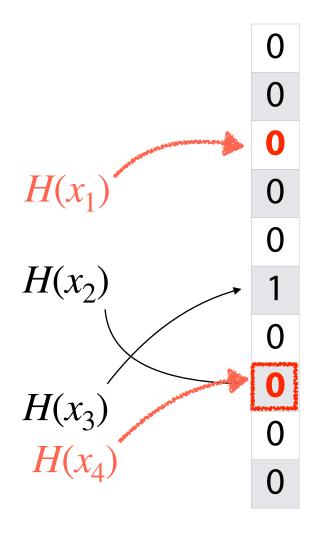
Non-reversible (Tradeoff)



Bloom Filter: Deletion

Due to hash collisions and lack of information,

items cannot be deleted!



Bloom Filter: Search

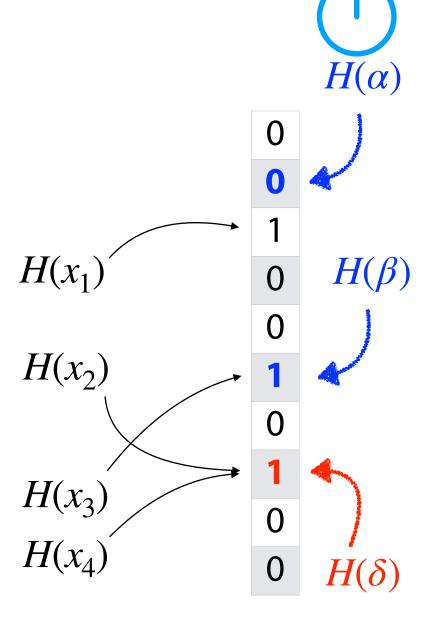
The bloom filter is a *probabilistic* data structure!

If the value in the BF is 0:

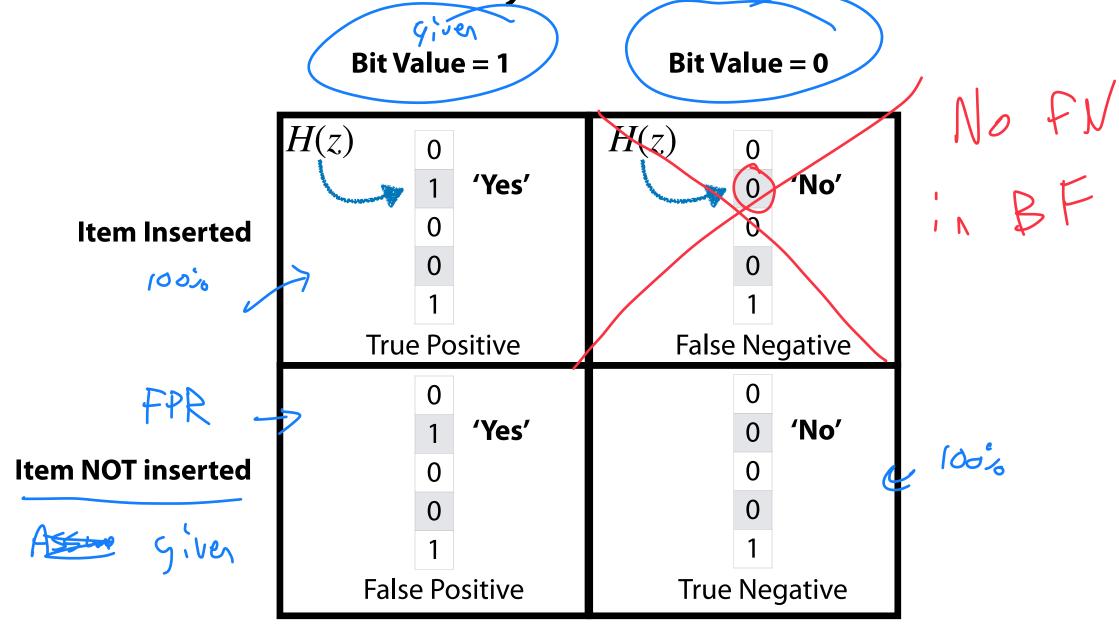
100% of time, we know it is not present

If the value in the BF is 1:

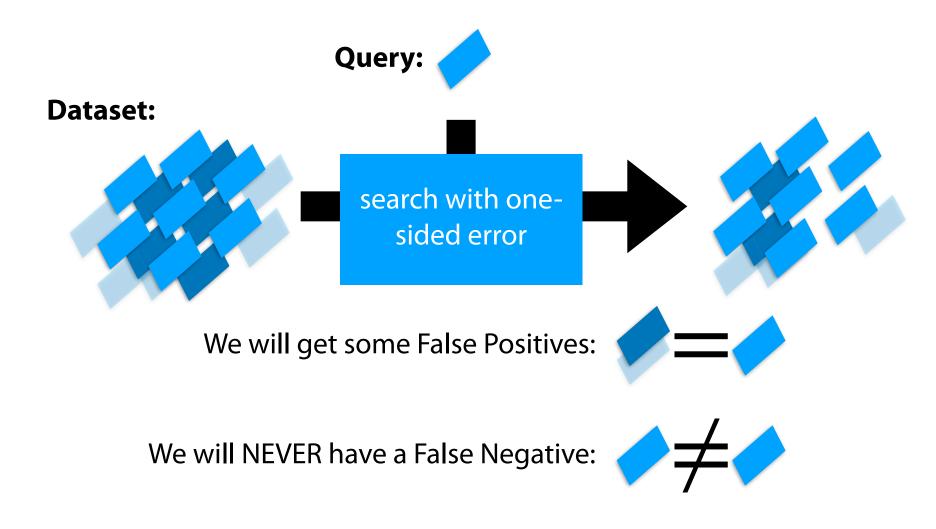
It may be present or it may be a hash collision



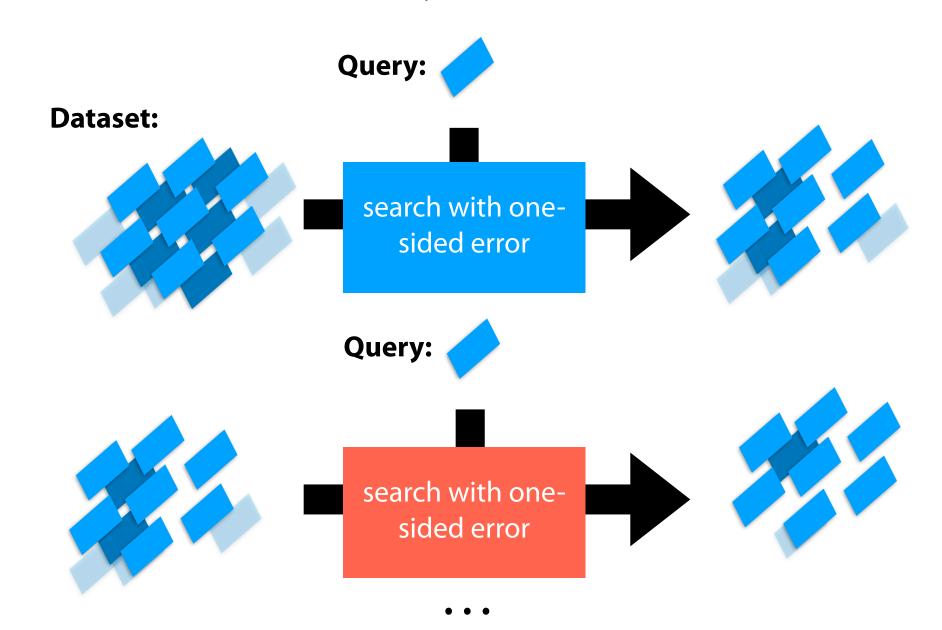
Probabilistic Accuracy in a Bloom Filter



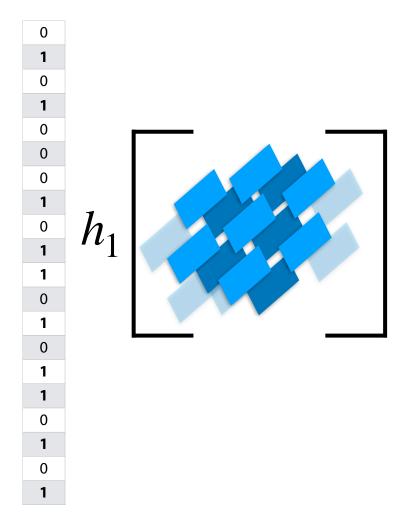
Probabilistic Accuracy: One-sided error



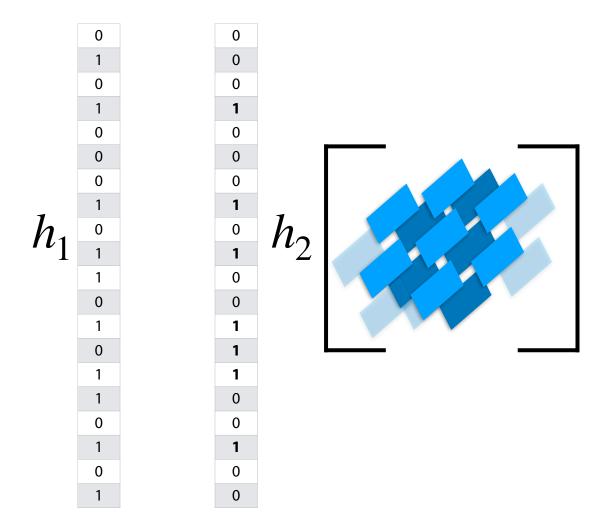
Probabilistic Accuracy: One-sided error



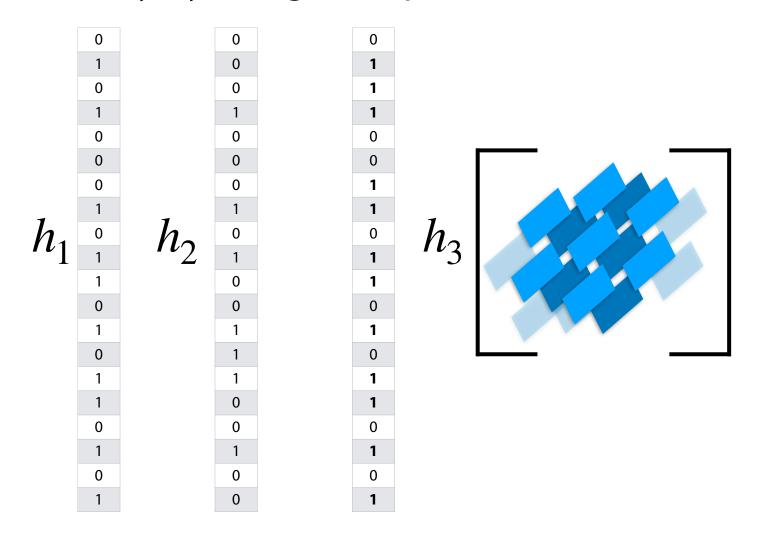
Improve accuracy by using multiple hash functions as a 'filter'



Improve accuracy by using multiple hash functions as a 'filter'



Improve accuracy by using multiple hash functions as a 'filter'



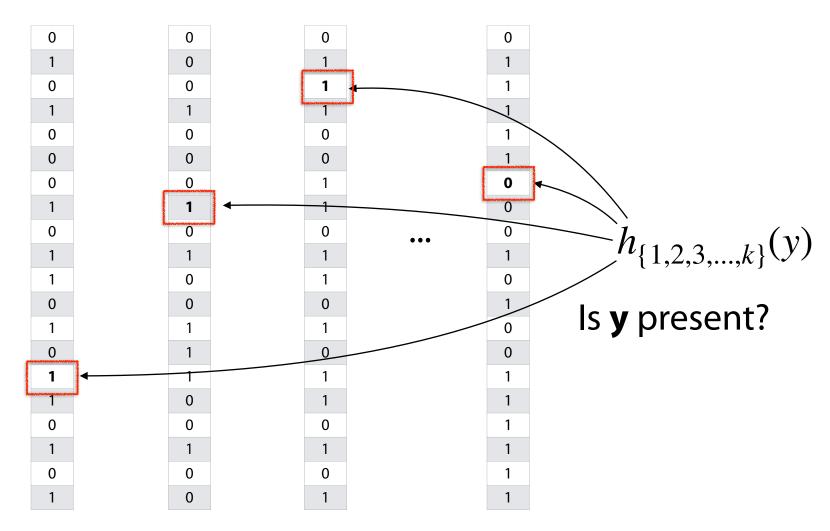
	0		0		0			0
	1		0		1			1
	0		0		1			1
	1		1		1			1
	0		0		0			1
	0		0		0			1
	0		0		1			0
-	1	_	1	-	1		-	0
h_1	0	h_2	0	h_3	0	•••	h_k	0
	1	102	1	113	1		K	1
	1		0		1			0
D'efferent	0		0		0			1
D'efferent hash functions	1		1		1			0
المماد	0		1		0			0
nosh	1		1		1			1
funktions	1		0		1			1
(SK(***)	0		0		0			1
	1		1		1			1
	0		0		0			1
	1		0		1			1

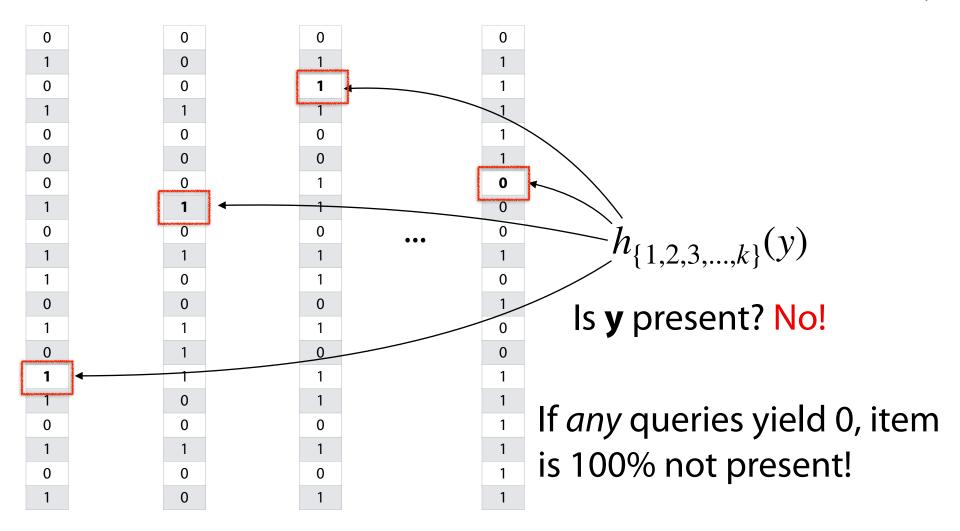
0
1
0
1
0
0
0
1
0
1
0
1
0
1
1
0
1
0
1

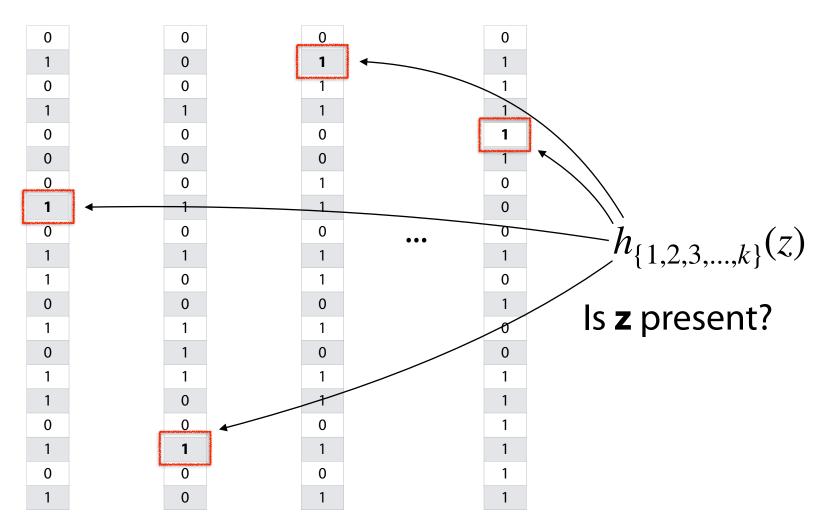
0	
0	
0	
1	
0	
0	
0	
1	
0	
1	
0	
0	
1	
1	
1	
0	
0	
1	
0	
0	

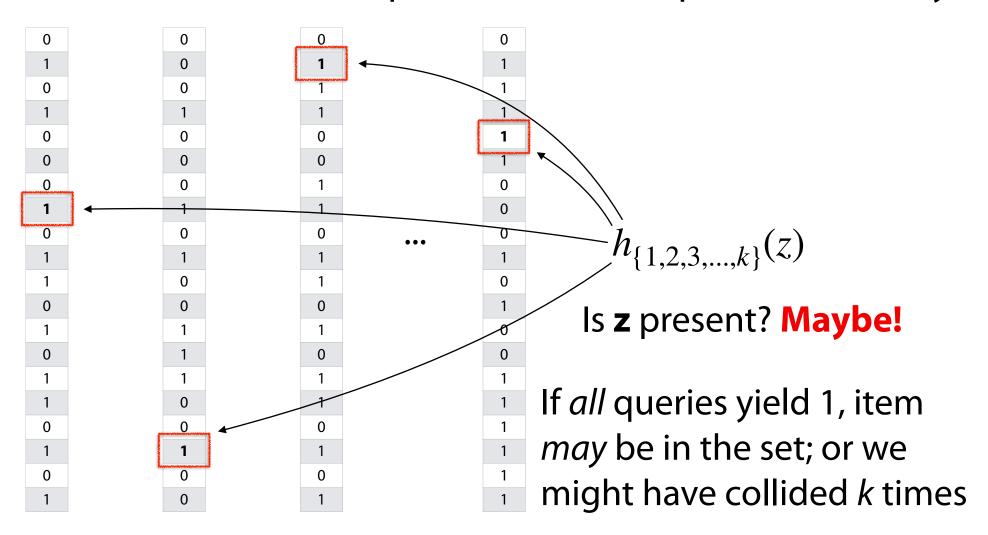
0
1
1
1
0
1
1
0
1
1
0
1
0
1
1
0
1
0
1

$$h_{\{1,2,3,...,k\}}(y)$$



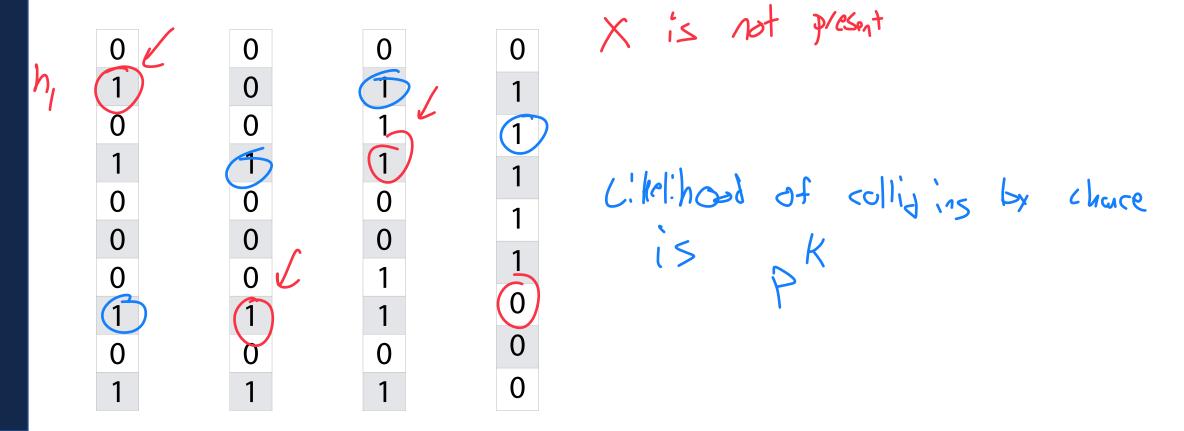




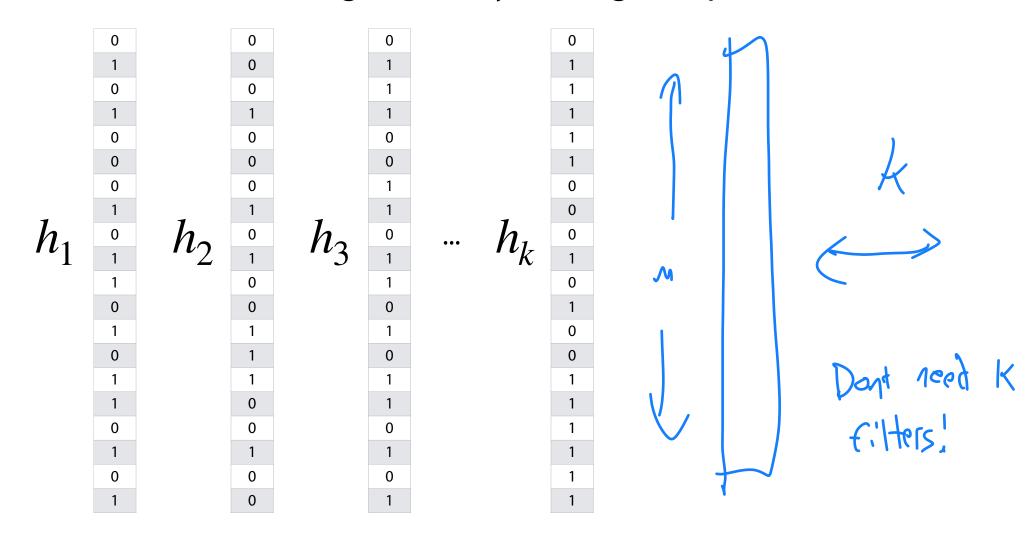


Using repeated trials, even a very bad filter can still have a very low FPR!

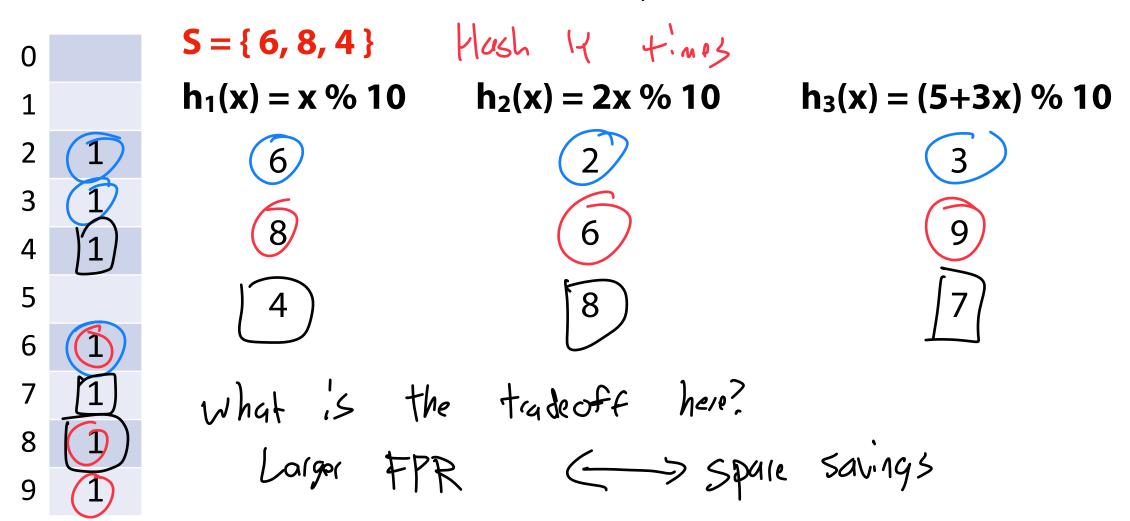
If we have k bloom filter, each with a FPR p, what is the likelihood that **all** filters return the value '1' for an item we didn't insert?



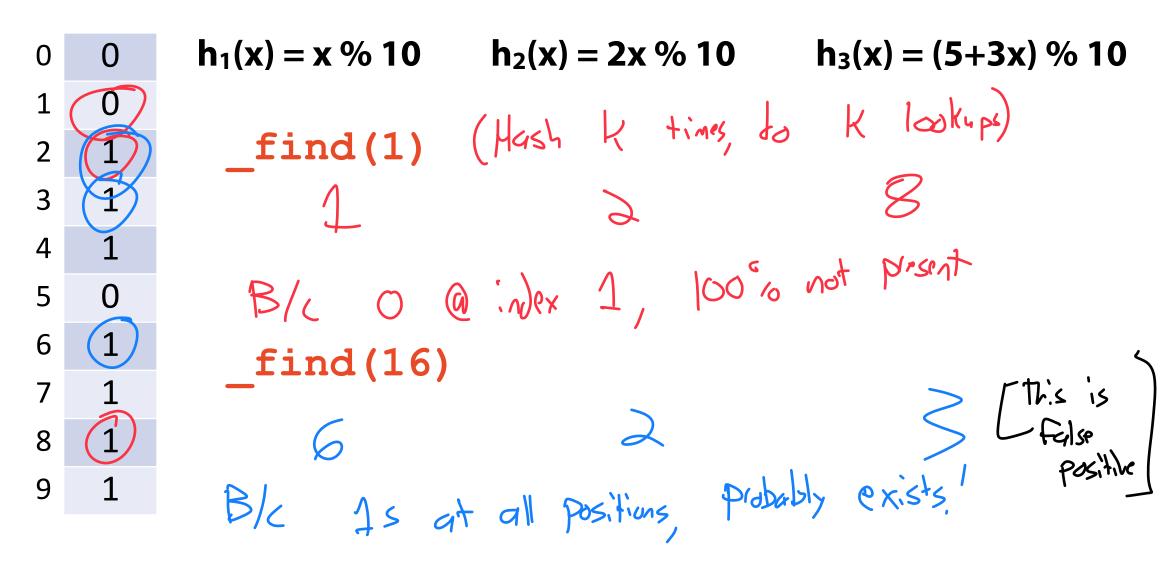
But doesn't this hurt our storage costs by storing k separate filters?



Rather than use a new filter for each hash, one filter can use k hashes



Rather than use a new filter for each hash, one filter can use k hashes



Bloom Filter

A probabilistic data structure storing a set of values

$$H = \{h_1, h_2, \dots, h_k\}$$

Built from a bit vector of length m and k hash functions

Insert / Find runs in:

More Collect

Delete is not possible (yet)!

)

0

1

0

0

1

0

1

0

0

 $h_{\{1,2,3,...,k\}}$

Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

(Probability that a bit is I)

after a insertions

K condom independent trials

hard to IPR

Given bit vector of size m and 1 SUHA hash function

What's the probability a specific bucket is 1 after Sulfa one object is inserted? one object is inserted?

M from uniform distribution

Same probability given k SUHA hash function?

M) K ENO! Bod! Incorrect!

T'p/Trick! If writing equation difficult, invertit!

 $h_{\{1.2.3....k\}}$

Given bit vector of size m and χ SUHA hash function

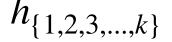
Probability a specific bucket is 0 after one object is inserted?

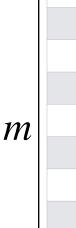
After *n* objects are inserted?

(1-1) nek independent unifolm condom
trials

Given bit vector of size m and k SUHA hash function

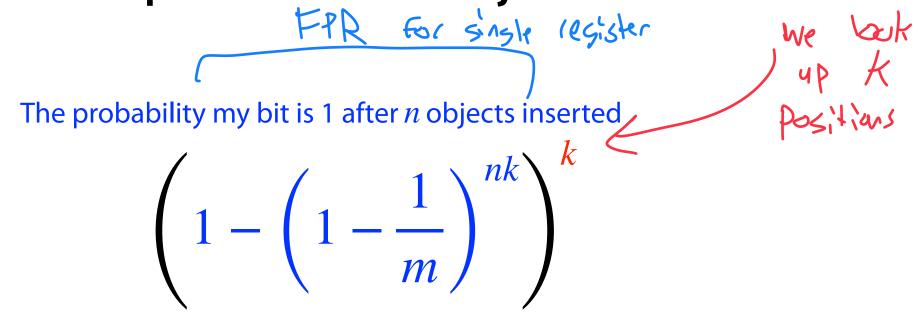
What's the probability a specific bucket is 1 after *n* objects are inserted?





Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?



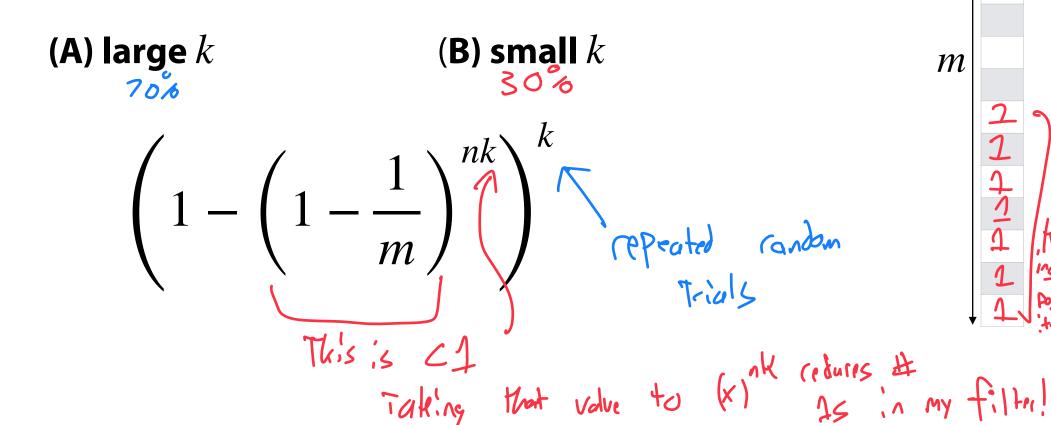
The number of [assumed independent] trials

$$h_{\{1,2,3,...,k\}}$$

 $h_{\{1,2,3,...,k\}}$

Vector of size m, k SUHA hash function, and n objects

To minimize the FPR, do we prefer...



Vector of size m, k SUHA hash function, and n objects

(A) large k

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

As *k* increases, this gets smaller!

(B) small k

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

As *k* decreases, this gets smaller!

To build the optimal hash function, fix **m** and **n**!

Claim: The optimal hash function is when $k^* = \ln 2 \cdot \frac{m}{n}$

$$(1) \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

(2)
$$\frac{d}{dk} \left(1 - e^{\frac{-nk}{m}} \right)^k \approx \frac{d}{dk} \left(k \ln(1 - e^{\frac{-nk}{m}}) \right)$$

Claim 1:
$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

$$e^{nk}\left(1-\frac{1}{m}\right)^{nk}=e^{\ln\left[\left(1-\frac{1}{m}\right)^{nk}\right]}$$

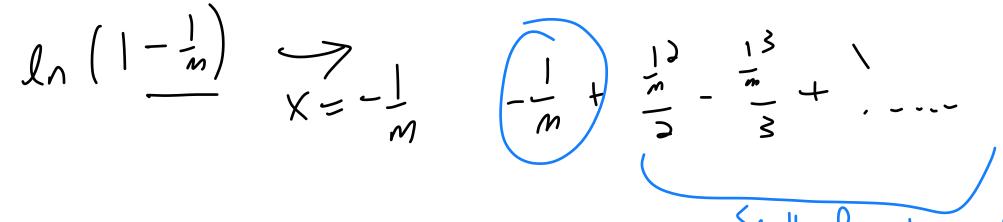
Claim 1:
$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

$$\left(1 - \frac{1}{m}\right)^{nk} = e^{\ln\left[\left(1 - \frac{1}{m}\right)^{nk}\right]}$$

$$= e^{\ln\left[\left(1 - \frac{1}{m}\right)\right]nk}$$

Taylors expansion of ln(1+x): $x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\dots$ "Mercator Series"

$$l_{n}\left(1-\frac{1}{m}\right) \longrightarrow \frac{1}{m}$$



$$\left(1 - \frac{1}{m}\right)^{nk} \approx e^{\frac{-nk}{m}}$$

Claim 1:
$$\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$$

$$\left(1 - \frac{1}{m}\right)^{nk} = e^{\ln\left[\left(1 - \frac{1}{m}\right)^{nk}\right]}$$

$$= e^{\ln\left[\left(1 - \frac{1}{m}\right)\right]nk}$$

$$\sim e^{\frac{-nk}{m}}$$

Bloom Filter: Optimal Error Rate

Claim 2:
$$\frac{d}{dk} \left(1 - e^{\frac{-nk}{m}} \right)^k \approx \frac{d}{dk} \left(k \ln(1 - e^{\frac{-nk}{m}}) \right)$$

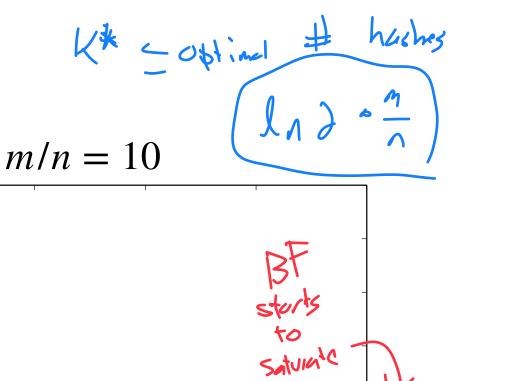
Fact:
$$\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \frac{df(x)}{dx}$$

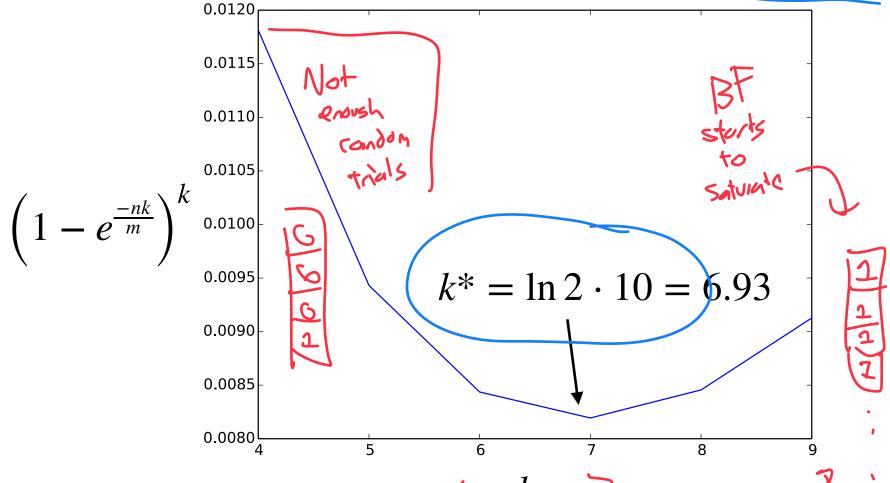
TL;DR:
$$min [f(x)] = min [ln f(x)]$$

Derivative is zero when
$$k^* = \ln 2 \cdot \frac{m}{n}$$

Math here
not important

Bloom Filter: Error Rate





Bloom Filter: Optimal Parameters

$$k^* = \ln 2 \cdot \frac{m}{n}$$

 $\left|k^* = \ln 2 \cdot \frac{m}{n}\right|$ Given any two values, we can optimize the third

$$n = 100$$
 items $k = 3$ hashes

$$k = 3$$
 hashes

$$m = 433$$

$$m=100$$
 bits

$$n=20$$
 items

$$k = 3.47$$
 — 4 hash

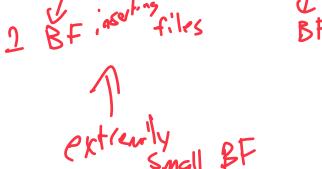
$$m=100$$
 bits

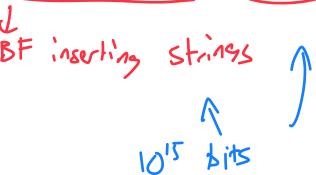
$$k=2$$
 items

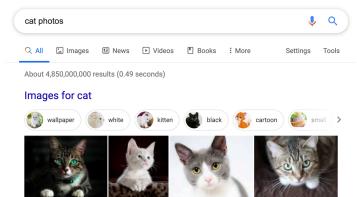
$$n = 34.7$$
 items 234 items

Bloom Filter: Optimal Parameters

n = 250,000 files vs ~10¹⁵ nucleotides vs 260 TB

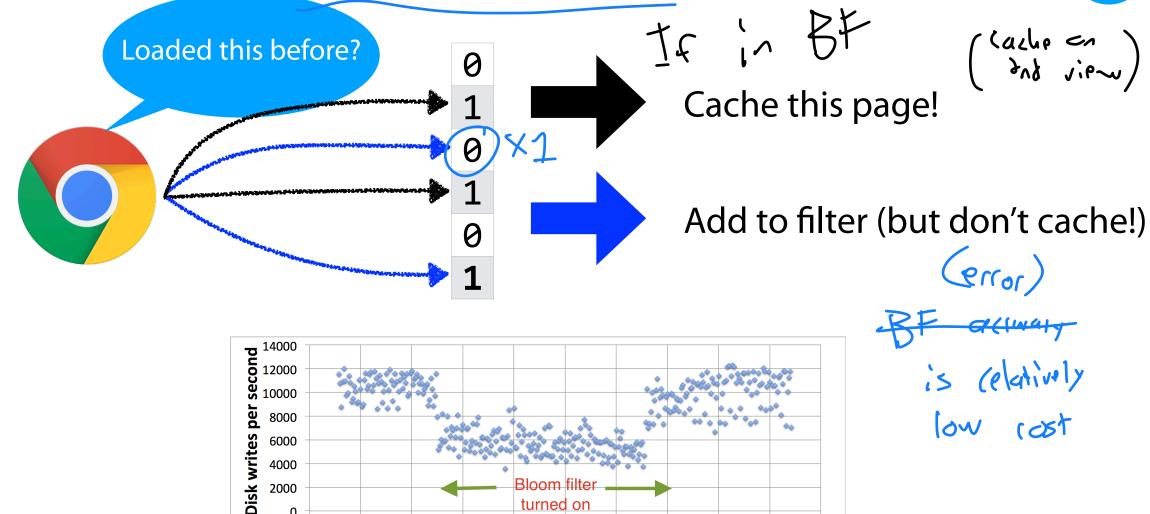






n = 60 billion — 130 trillion

Bloom Filter: Website Caching



turned on

Date

18-Apr 28-Apr 8-May 18-May 28-May

19-Mar 29-Mar 8-Apr

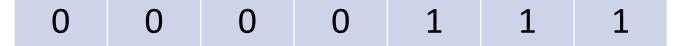
Bitwise Operators in C++

How can we encode a bit vector in C++?

Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab_Bloom won't do this but MP_Sketching will!



Bloom Filters: Unioning

Bloom filters can be trivially merged using bit-wise union.

		\1 1				
0	1	01	0	0	0	1
1	0		1	1	1	2
2	1		2	1	2	2
3	1		3	0	3	
4	0	U	4	0	= ->4	
5	0		5	0	5	
6	1		6	1	6	
7	0		7	1	7	
8	0		8	1	8	
9	1		9	1	9	

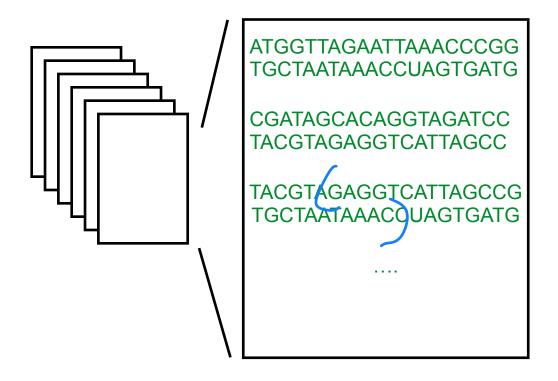
Bloom Filters: Intersection

Bloom filters can be trivially merged using bit-wise intersection.

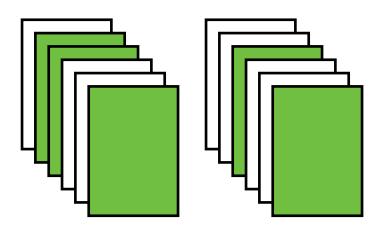
0	1		0	0		0	0	
1	0		1	1		1	\bigcirc	
2	1	"Cend"	2	1		2	1	
3	1		3	0		3		
4	0		4	0	=	4	0	
5	0		5	0		5		
6	1		6	1		6		
7	0		7	1		7		
8	0		8	1		8		
9	1		9	1		9		

Sequence Bloom Trees

Imagine we have a large collection of text...

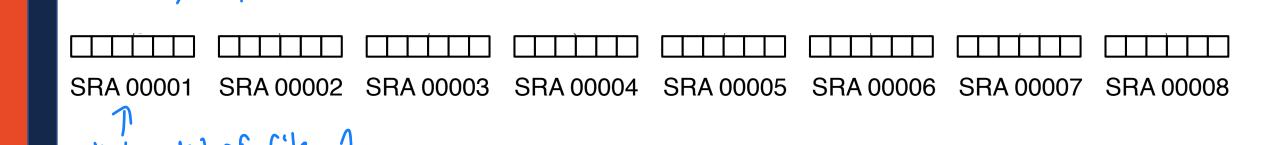


And our goal is to search these files for a query of interest...

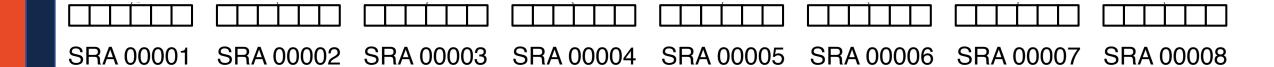


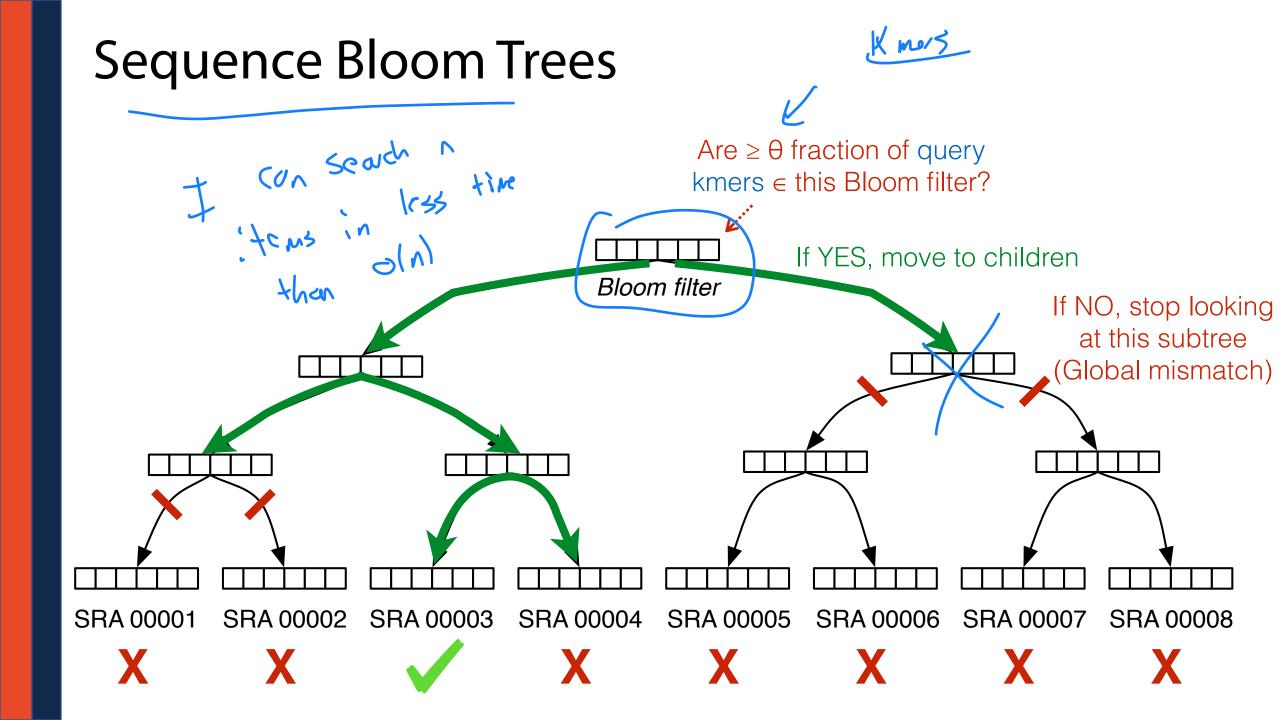
Bit Vector Merging

What is the conceptual meaning behind union and intersection?

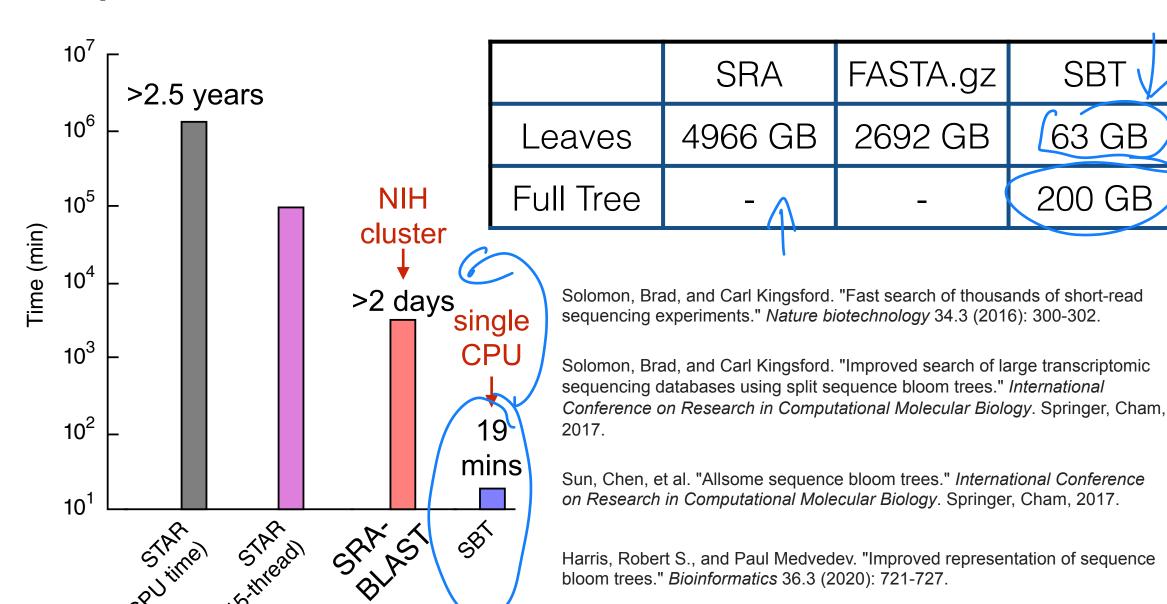


Sequence Bloom Trees





Sequence Bloom Trees



Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." *Proceedings of the 2003 ACM SIGMOD international conference on Management of data*. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." *Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies*. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." *IEEE/ACM transactions on networking* 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." *Information Systems* 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." *Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms*. 2004.

There are many more than shown here...