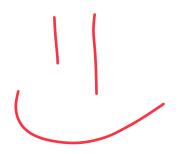
Data Structures and Algorithms Hashing 3

CS 225 Brad Solomon November 17, 2025



Department of Computer Science

Announcements

MP Puzzle releases today

Next week is Fall break (does not count as week for assignments)

Exam 5 is immediately after fall break!

Exam Retake is 12/7 — 12/9

Pick One

Grade is aveloge of both this can
hut you

There are no guarantees about overrides on the retake exam!

Learning Objectives

Review hash table implementations

Improve our closed hash implementation

Determine when and how to resize a hash table

Justify when to use different index approaches

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, h, implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2 \text{ , } Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform: All keys equally likely to hash to any position

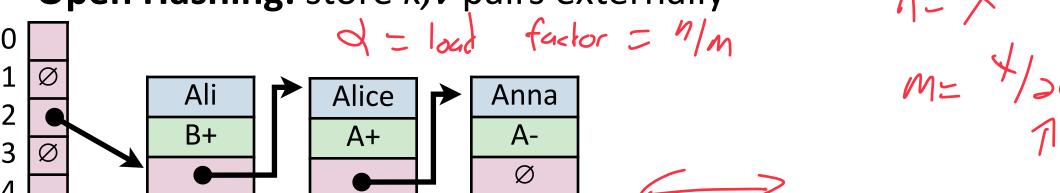
$$Pr(h[k_1]) = \frac{1}{m}$$

Independent: All key's hash values are independent of other keys

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

• Open Hashing: store k, v pairs externally



• Closed Hashing: store k, v pairs in the hash table M

0	Anna, A-	7
1		5
2	Ali, B+	
3	Alice, A+	

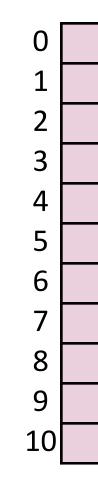
Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: O(1+ α).

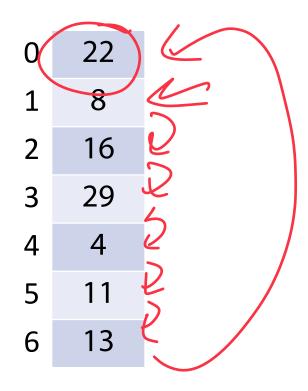
Insert runs in: O(1).

Remove runs in: $O(1+\alpha)$.



Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$
 $|S| = n$
 $h(k) = k \% 7$ $|Array| = m$



$$h(k, i) = (k + i) \% 7$$

Try $h(k) = (k + 0) \% 7$, if full...

Try $h(k) = (k + 1) \% 7$, if full...

Try $h(k) = (k + 2) \% 7$, if full...

Try ...

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$
 $|S| = n$
 $h(k, i) = (k + i) \% 7$ $|Array| = m$

0	22	
1	8	
2	16	
3	29	
4	4	
5	11	
6	13	

find(29)

- 1) Hash the input key [h(29)=1]
- 2) Look at hash value (address) position If present, return (k, v)

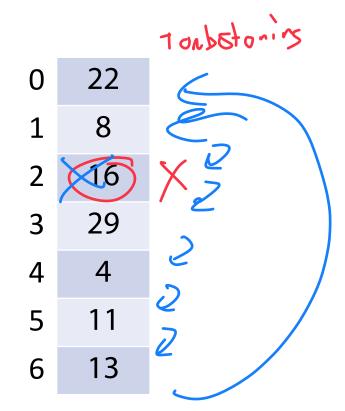
 If not look at **next available space**

Stop when:

- 1) We find the object we are looking for
- 2) We have searched every position in the array
- 3) We find a blank space

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$
 $|S| = n$
 $h(k, i) = (k + i) \% 7$ $|Array| = m$



remove (16)

- 1) Hash the input key [h(16)=2]
- 2) Find the actual location (if it exists)
- 3) Remove the (k,v) at hash value (address)

Don't resize the array! Tombstone!

A Problem w/ Linear Probing

Primary Clustering: "Rich get richer"

0	
1	11
2	12
3	3 ₁
4	1 ₃
5	32
6	
7	
8	
9	

Description:

Collisions create long runs of filled-in indices Should have a 1/m chance to hash anywhere

Instead have a (size of cluster) / m chance to hash at end

Many more callisians than

Remedy: Pitt better next avoilable

A Problem w/ Linear Probing

Primary Clustering: "Rich get richer"

0	
1	11
2	12
3	31
4	1 ₃
5	32
6	
7	
8	
9	

Description:

Collisions create long runs of filled-in indices

Should have a 1/m chance to hash anywhere

Instead have a (size of cluster) / m chance to hash at end

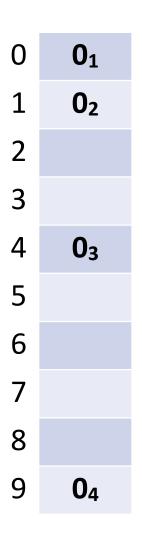
Remedy:

Pick a better "next available" position!

Collision Handling: Quadratic Probing

A Problem w/ Quadratic Probing

Secondary Clustering:



Description:

Individual collisions still yield long chains

Remedy:

Be less consistent (but still deterministic)

Collision Handling: Double Hashing

$$h_1(k) = k \% 7$$

$$h_2(k) = 5 - (k \% 5) 1 3$$

h(k, i) = (h₁(k) + i*h₂(k)) % 7
Try h(k) = (k + 0*h₂(k)) % 7, if full...
Try h(k) = (k + 1*h₂(k)) % 7, if full...
Try h(k) = (k + 2*h₂(k)) % 7, if full...
Try ...

$$2\lambda$$
 $4+3=4$
 $1+6=7$ %7=0

4+8=13%7=5

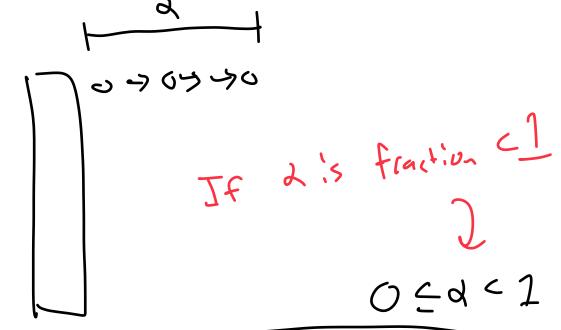
Running Times (Understand why we have these rough forms)

(Expectation under SUHA)

Open Hashing:

insert:

find/remove: 1+d



Closed Hashing:

insert:

find/ remove:

ONI (

Running Times (Expectation under SUHA)

Open Hashing: $0 \le \alpha \le \infty$

$$0 \le \alpha \le \infty$$

insert:

$$1 + \alpha$$

find/ remove: _

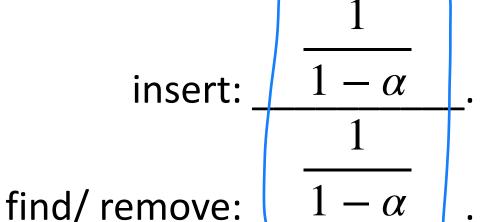
Observe:

- As α increases:

runtime increuses to 20

Q 700

Closed Hashing: $0 \le \alpha < 1$



271

- If α is constant:

2.0.5

4) Contine is a constant

Running Times (Don't memorize these equations, no need.)

The expected number of probes for find(key) under SUHA

Linear Probing:

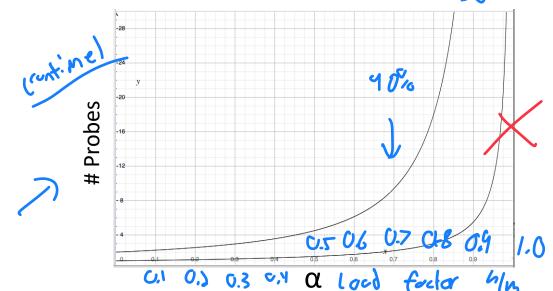
- Successful: $\frac{1}{1}(1 + \frac{1}{1-\alpha})$
- Unsuccessful: $\frac{1}{1}(1 + \frac{1}{1-\alpha})^2$

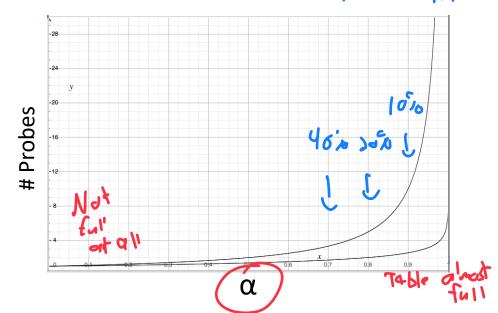
Double Hashing:

• Successful: $1/\alpha * ln(1/(1-\alpha))$

• Unsuccessful: $1/(1-\alpha)$

When do we resize? LP: 0.5 - 0.7



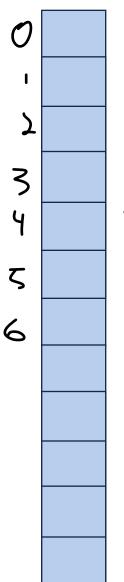


Resizing a hash table h(k) = 4%7

How do you resize?

Double size of orlay and moke new hash

(of 4 over all tems No! Rehash all itens



L(K)= K %14 Claim! Hach table insert is 0/1)

This is assuming SulfA (expectation)

This is pseudo amortized 9I resize at 0.9 caposity

* When I double, I double to a new prime #

tradeoffs! I can lesize
Parlier if speed matters (ost : Insert gets 'slower'

Which collision resolution strategy is better?

• Big Records: Open hash (Pass by lef)

• Structure Speed: () hashing

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all? Range find

std::map in C++

```
T& map<K, V>::operator[]
pair<iterator, bool> map<K, V>::insert()
iterator map<K, V>::erase()

iterator map<K, V>::lower_bound( const K & );
iterator map<K, V>::upper bound( const K & );
```

std::unordered_map in C++

```
T& unordered map<K, V>::operator[]
pair<iterator, bool> unordered map<K, V>::insert()
iterator unordered map<K, V>::erase()
iterator map<K, V>::lower bound( const K & );
iterator map<K, V>::upper bound( const K & );
float unordered map<K, V>::load factor();
void unordered map<K, V>::max load factor(float m);
```

Running Times Akded after class for study papers

	Hash Table	AVL	Linked List
Find	Expectation*: (1) Worst Case: (n)		
Insert	Expectation*: (1) Worst Case: (n) O(1) for separate chain!		
Storage Space			

Next Class: Probabilistic Accuracy in Data Structures

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Pick a random a in the range [2, p-2]

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

Let's assume $\alpha = .5$

First trial: $a=a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our false positive probability? Our false negative probability?

	$a^{p-1} \equiv 1 \pmod{p}$	$a^{p-1} \not\equiv 1 \; (mod p)$
p is prime		
p is not prime		

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness: The choice of α .

We can even pick more than one α if we want!

Assumptions: Only that random numbers are actually random

While strictly not true, generally an acceptable assumption in practice

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

What type of algorithm is Fermat's primality test?

What type of algorithm is randomized quick sort?

Bonus Slides

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

2) Create a *universal hash function family:*

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Hash Function (Division Method)

Hash of form: h(k) = k % m

Pro:

Con:

Hash Function (Mid-Square Method)

Hash of form: h(k) = (k * k) and take b bits from middle $(m = 2^b)$

Hash Function (Mid-Square Method)

Hash of form: h(k) = (k * k) and take b bits from middle $(m = 2^b)$

Hash Function (Multiplication Method)

Hash of form: $h(k) = |m(kA\%1)|, 0 \le A \le 1$

Pro:

Con:

Hash Function (Universal Hash Family)

Hash of form:
$$h_{ab}(k) = ((ak + b) \% p) \% m$$
, $a, b \in \mathbb{Z}_p^*, \mathbb{Z}_p$

$$\forall k_1 \neq k_2$$
, $Pr_{a,b}(h_{ab}[k_1] = h_{ab}[k_2]) \leq \frac{1}{m}$

Pro:

Con: