The Structures and Algorithms Hashing

CS 225 Brad Solomon

November 12, 2025

when in doubt,
use a hash!

Department of Computer Science

Randomization in Algorithms - Brad's take

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Learning Objectives

Motivate and formally define a hash table

Discuss what a 'good' hash function looks like

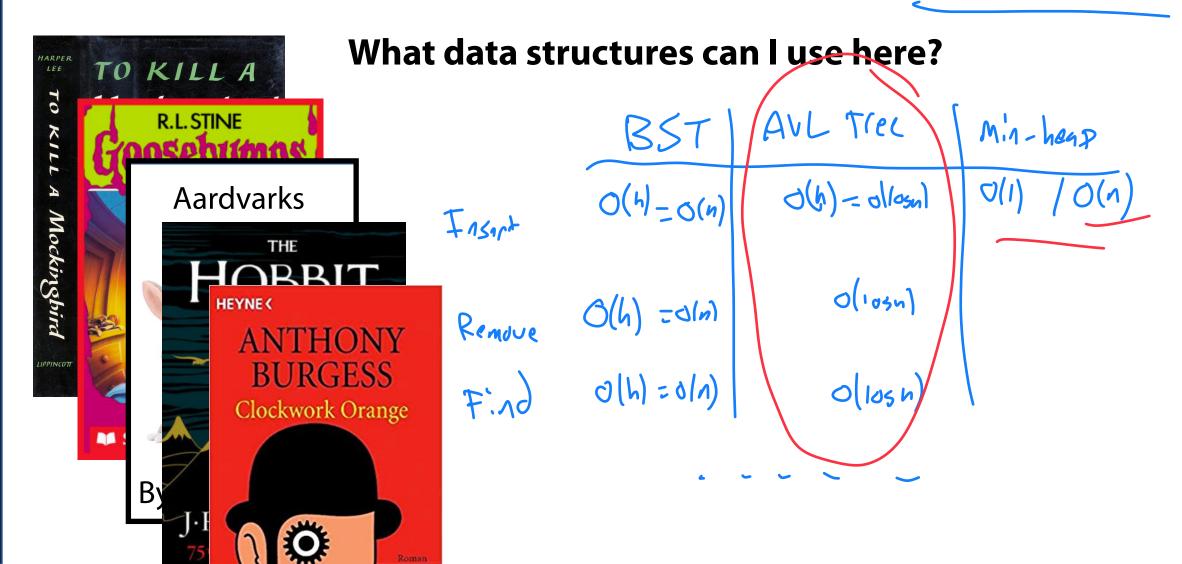
Identify the key weakness of a hash table

Introduce strategies to "correct" this weakness

Data Structure Review

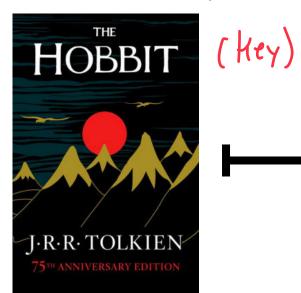
Keys: Title Value: contents

I have a collection of books and I want to store them in a dictionary!



What if O(log n) isn't good enough?

Some dit input



A romber / an address

ISBN: 9780062265722

Call #: PR

6068.093

H35 1937

Allmss

ISBN: 9780062265722

Call #: PR

6068.093

H35 1937

Chapter I AN UNEXPECTED PARTY

In a hole in the ground there lived a hobbit. Not a nasty, dirty, wet hole, filled with the ends of worms and an oozy smell, nor vet a dry, bare, sandy hole with nothing in it to sit down on or to eat: it was a hobbit-hole, and that means comfort.

It had a perfectly round door like a porthole, painted green, with a shiny yellow brass knob in the exact middle. The door opened on to a tube-shaped hall like a tunnel: a very comfortable tunnel without smoke, with panelled walls, and floors tiled and carpeted, provided with polished chairs, and lots and lots of pegs for hats and coats-the hobbit was fond of visitors. The tunnel wound on and on, going fairly but not quite straight into the side of the hill-The Hill, as all the people for many miles round called it-and many little round doors opened out of it, first on one side and then on another. No going upstairs for the hobbit: bedrooms, bathrooms, cellars, pantries (lots of these), wardrobes (he had whole rooms devoted to clothes), kitchens, dining-rooms, all were on the same floor, and indeed on the same passage. The best rooms were all on the left-hand side (going in), for these were the only ones to have windows, deep-set round windows looking over his garden, and meadows beyond, sloping down to the

This hobbit was a very well-to-do hobbit, and his name

Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on **expected** performance

Randomized data structures 'cheat' tradeoffs!

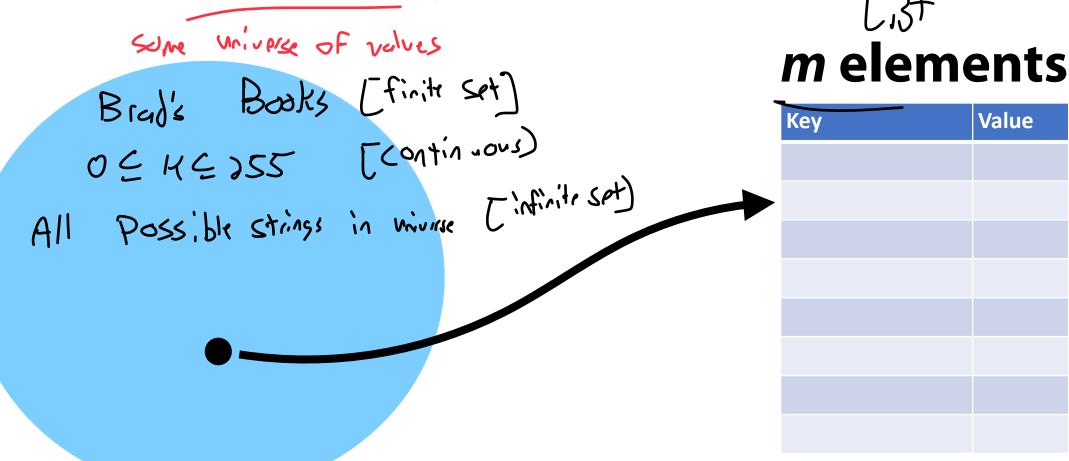
User Code (is a map):

```
1 | Dictionary<KeyType, ValueType> d;
2 | d[k] = v;
```

A **Hash Table** consists of three things:

Maps a keyspace, a (mathematical) description of the keys for

a set of data, to a set of integers.



A hash function **must** be:

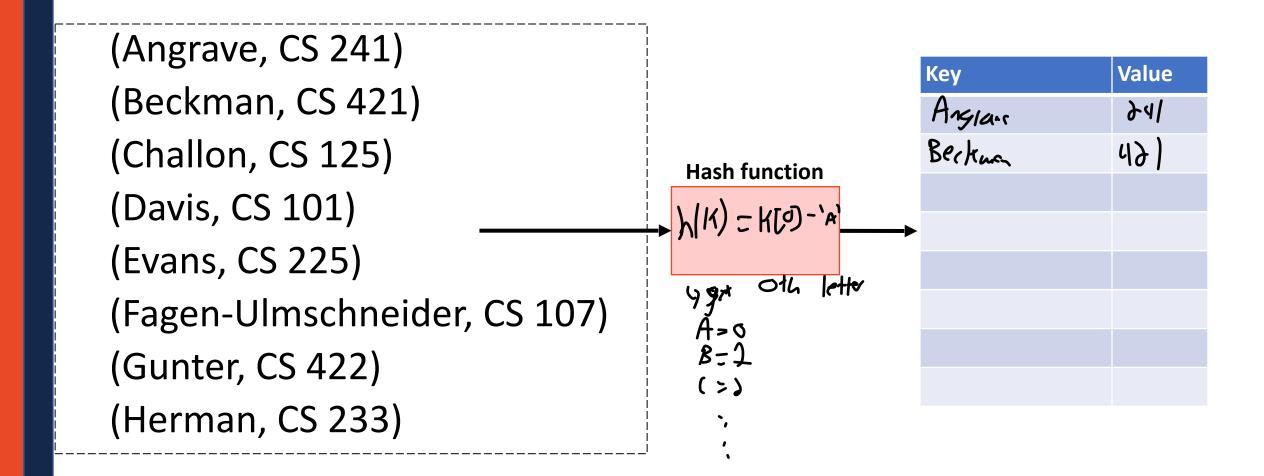
• Deterministic: If you input some they twile, get some output

• Efficient: ()() '5 |04|

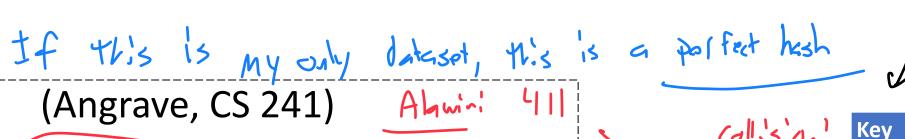
• Defined for a certain size table:
$$h(k) \rightarrow [0, M-1]$$

We have 1:st

Uf 5:76



Problem 1: (all!s'ons



(Beckman, CS 421)

(Challon, CS 125)

(Davis, CS 101)

(Evans, CS 225)

(Fagen-Ulmschneider, CS 107)

(Gunter, CS 422)

(Herman, CS 233)

 	Coll.	5.01	•
 			F
 	Hash function		E
	Trasii Turiction		(
-	(key[0] - 'A')		[
 			E

Value
241
421
125
101
225
107
422
233

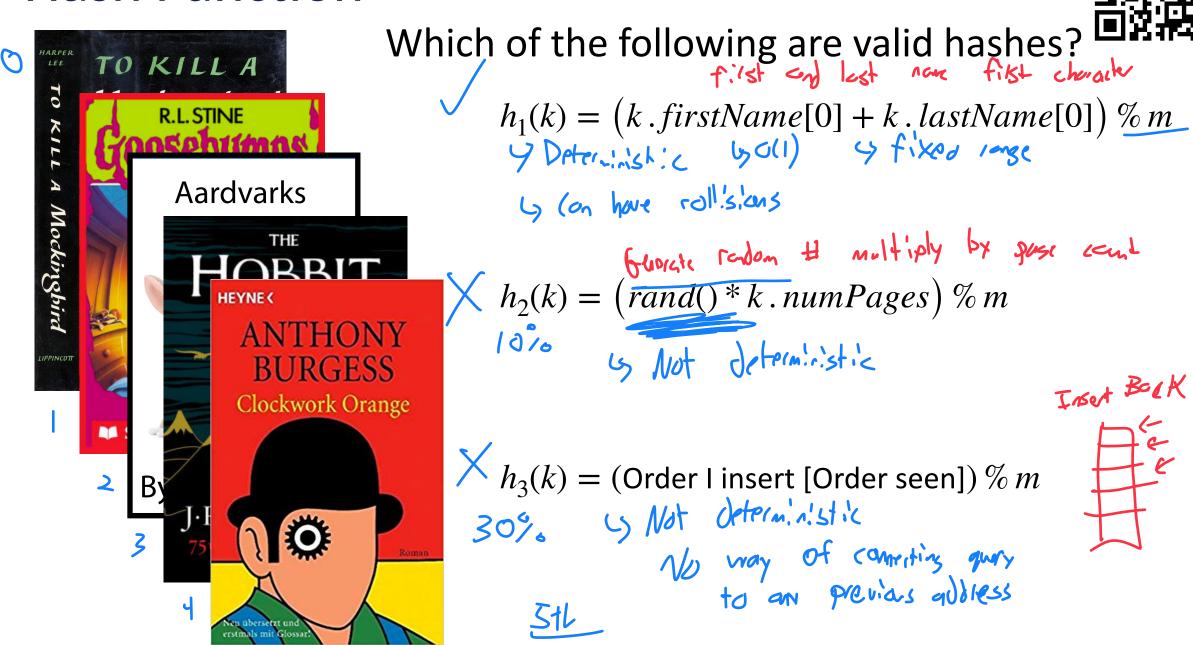
General Hash Function

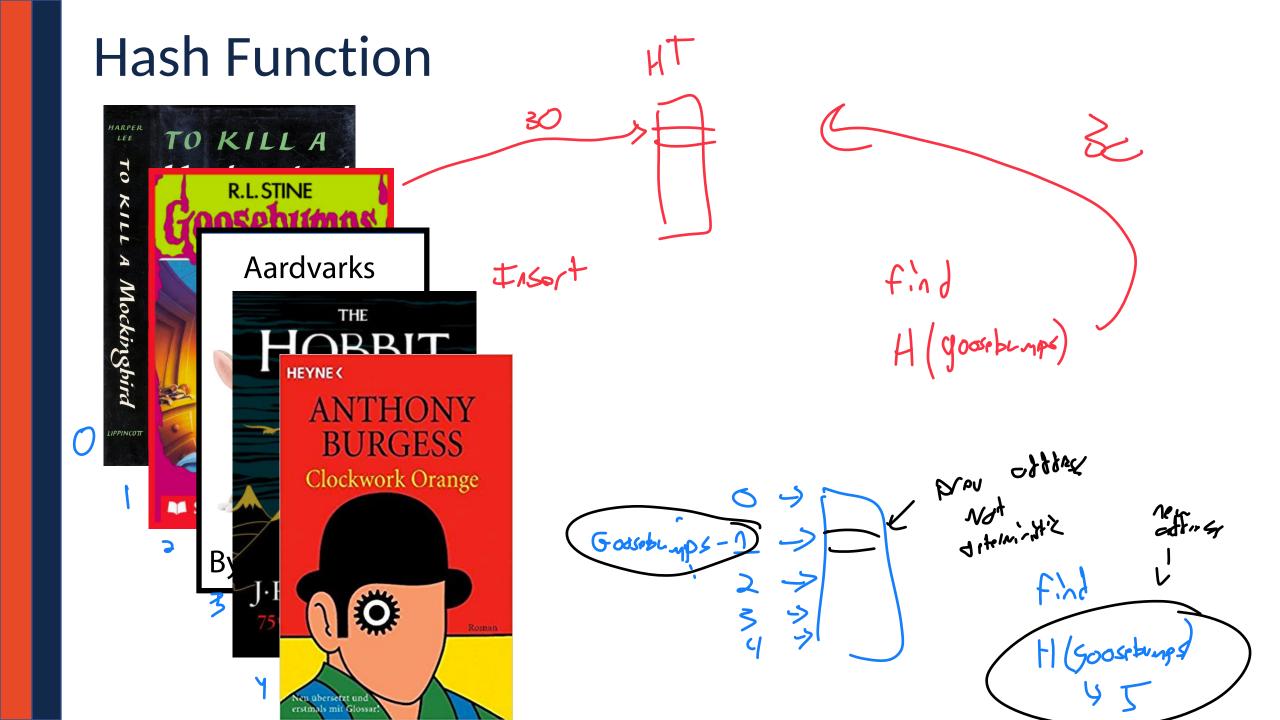
An O(1) deterministic operation that maps all keys in a universe U to a defined range of integers [0,...,m-1]

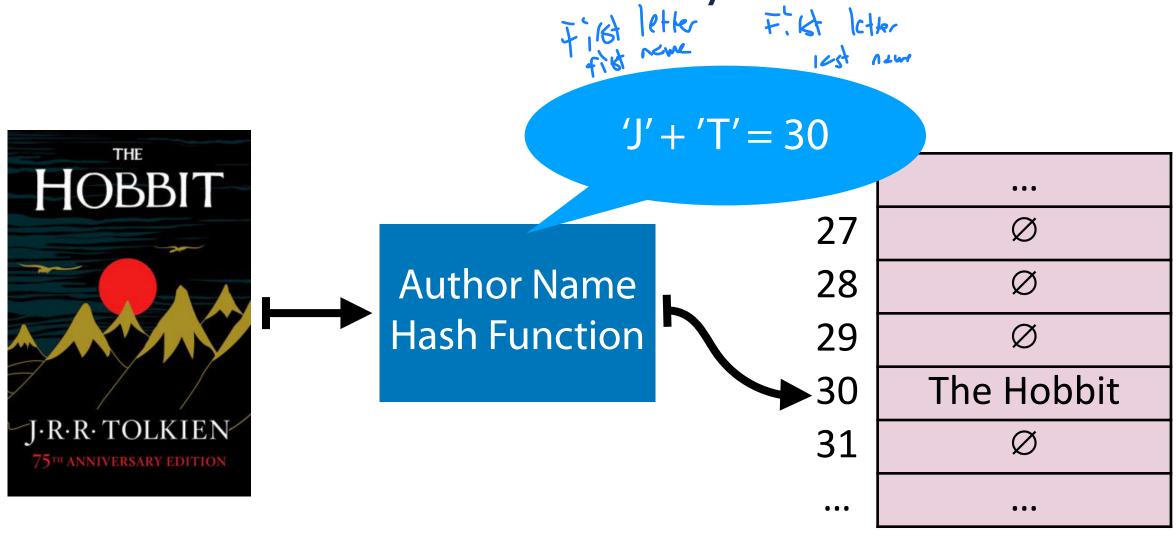
• A compression:
$$h(k)$$
 % M

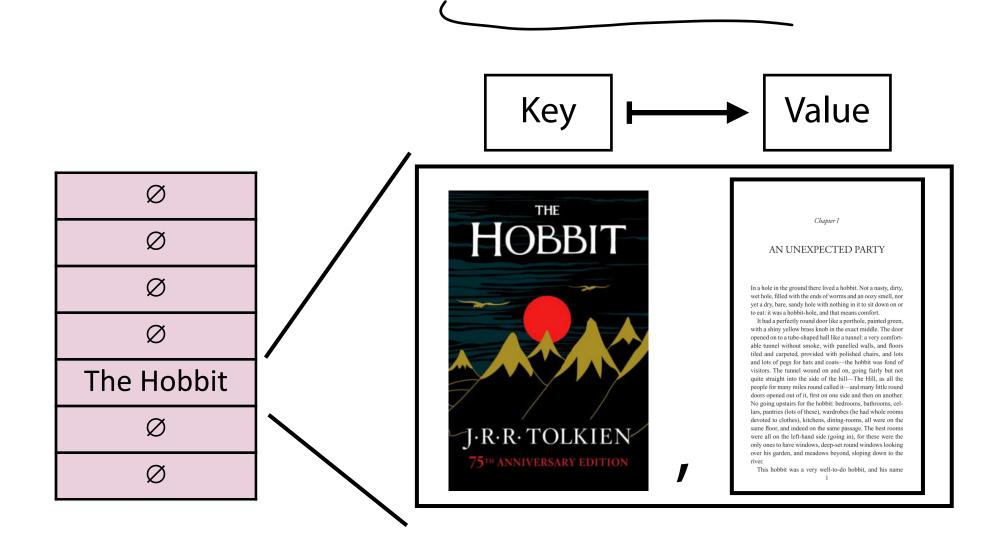
Choosing a good hash function is tricky...

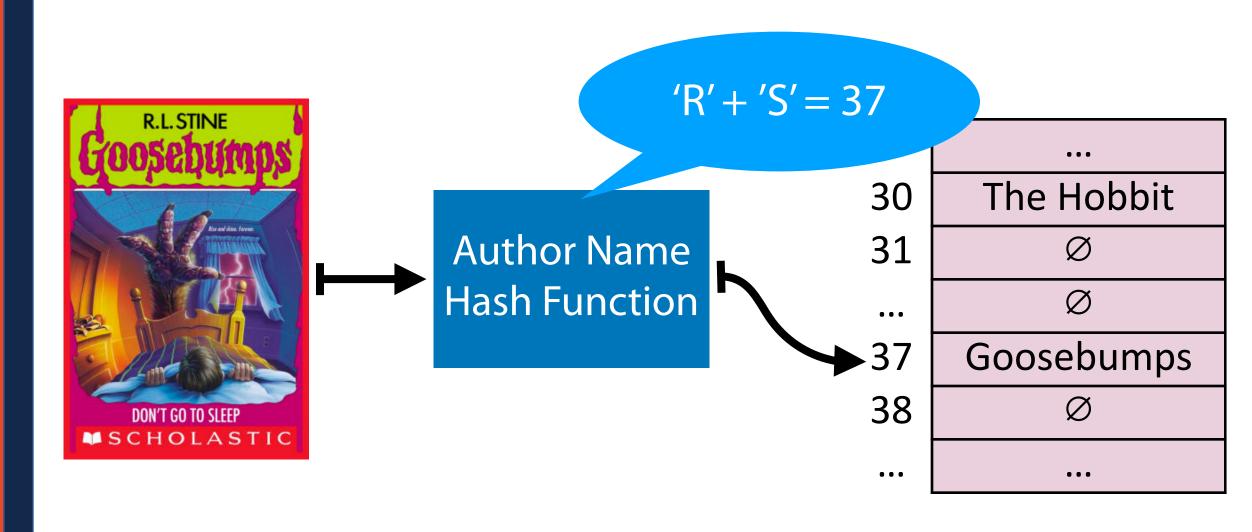
Don't create your own (yet*)

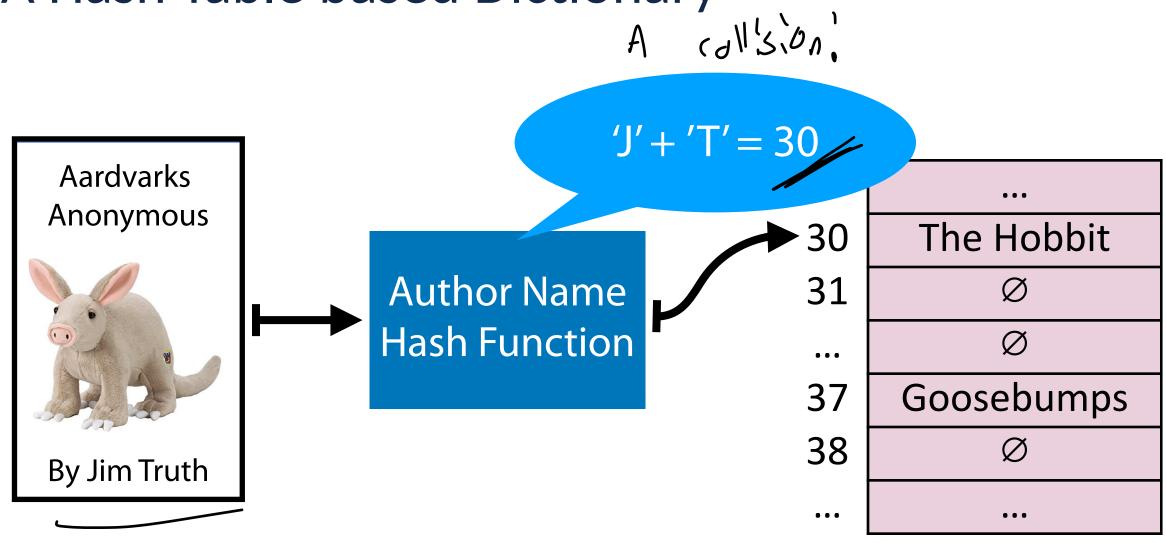








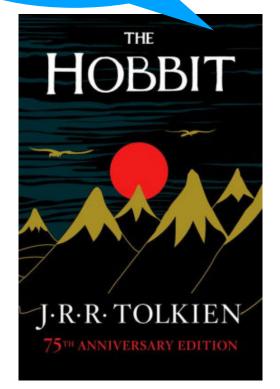




Hash Collision

A *hash collision* occurs when multiple unique keys hash to the same value

J.R.R Tolkien = 30!

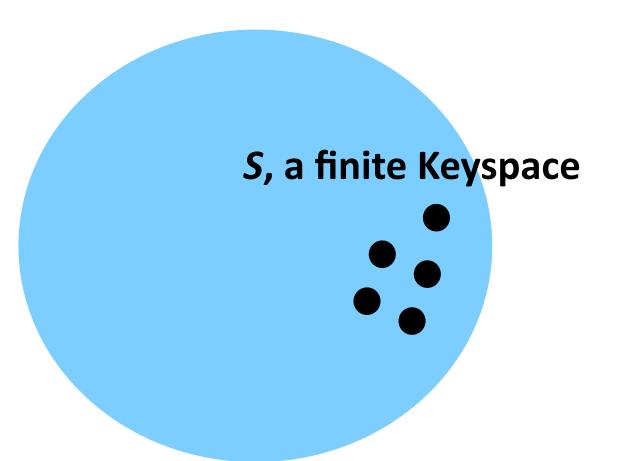


Jim Truth = 30!

•••	•••
30	555
31	Ø
•••	Ø
37	Goosebumps
38	Ø
•••	•••

Perfect Hashing

If $m \ge S$, we can write a *perfect* hash with no collisions

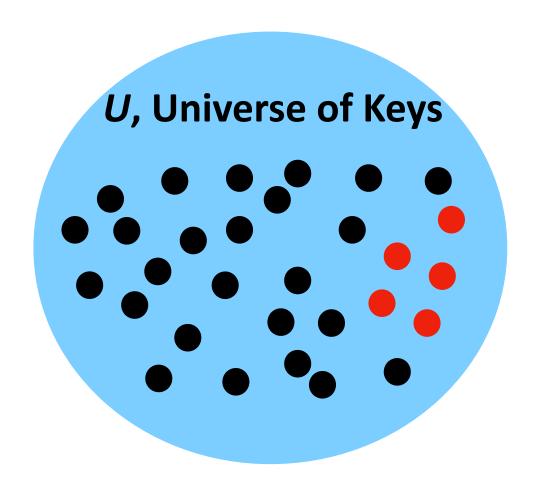


m elements

Value

General Purpose Hashing

In CS 225, we want our hash functions to work in general.

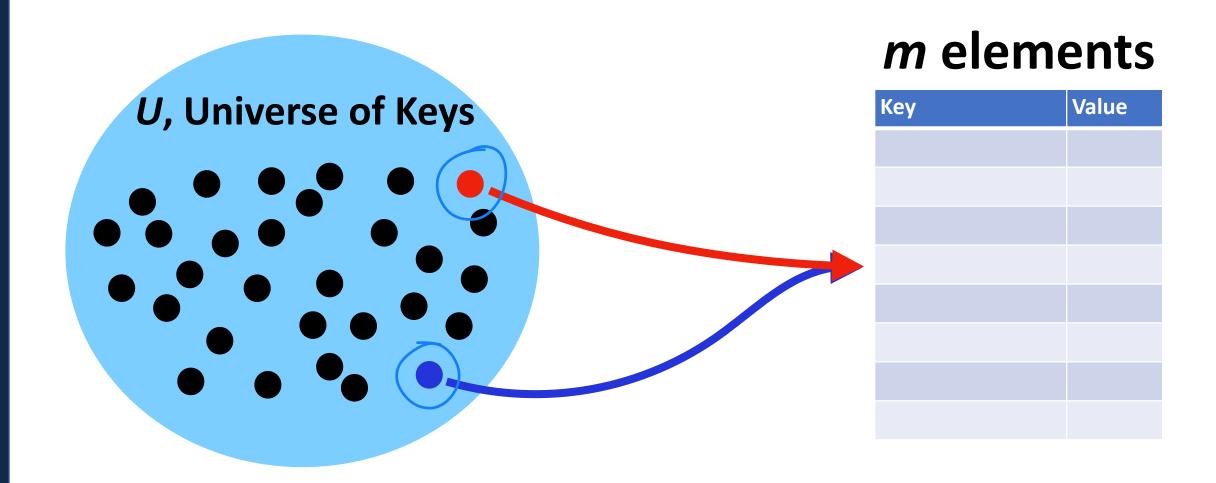


m elements

Key	Value

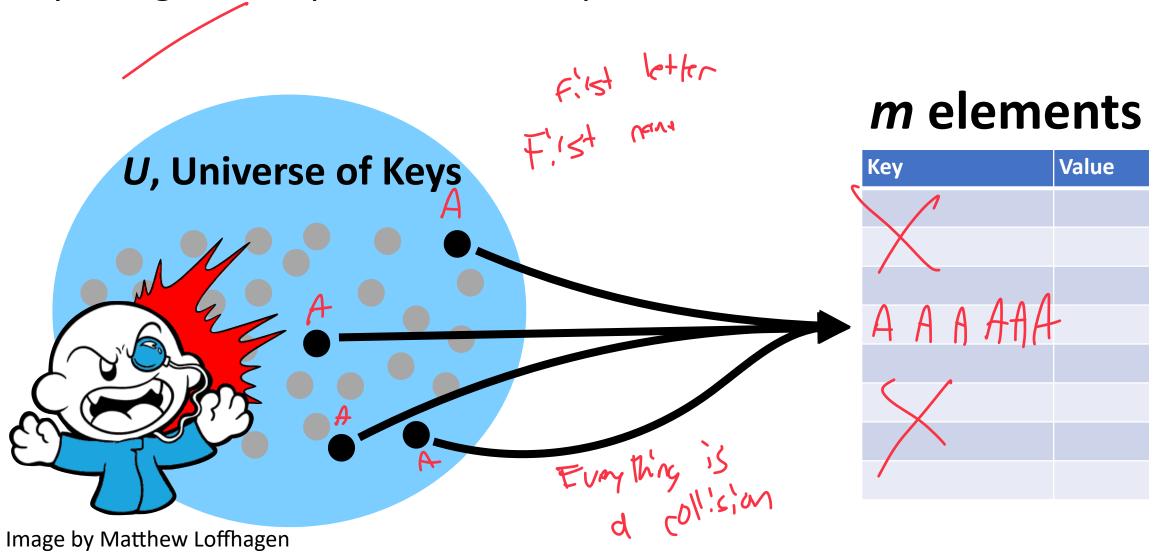
General Purpose Hashing

If m < U, there must be at least one hash collision.



General Purpose Hashing

By fixing h, we open ourselves up to adversarial attacks.



User Code (is a map):

```
Dictionary<KeyType, ValueType> d;
d[k] = v;
```

A **Hash Table** consists of three things:

1. A hash function

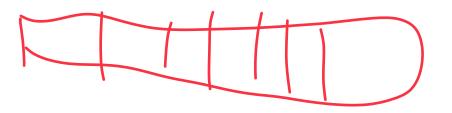
2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

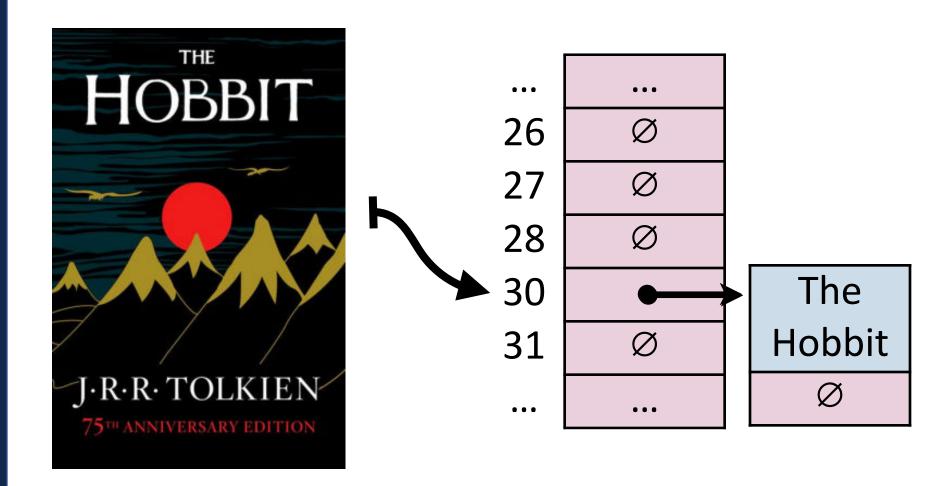
Addressing hash collisions depends on your storage structure.

• Closed Hashing: Stole 11,0 in One fixed Size allay



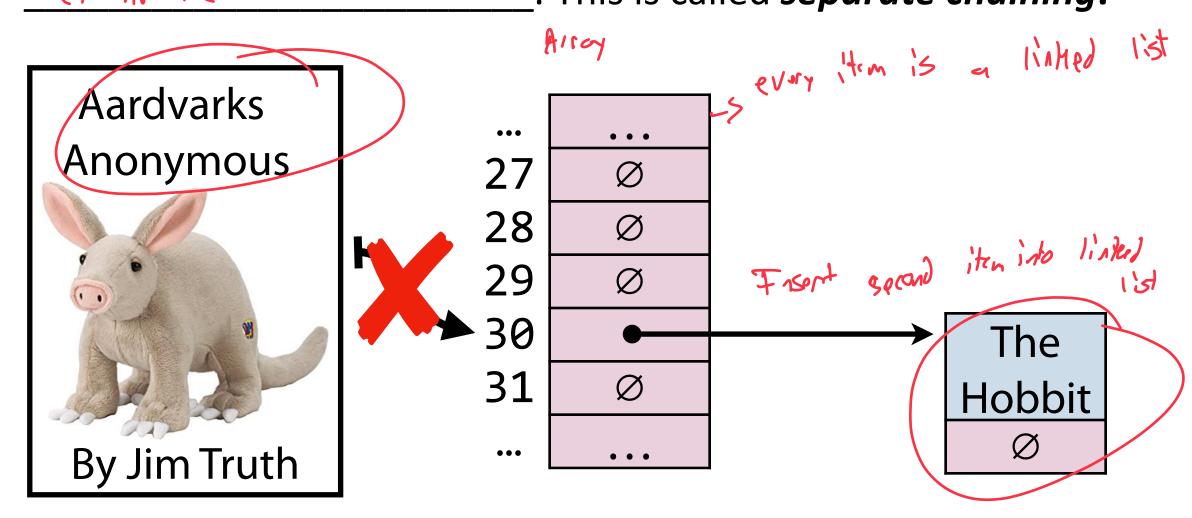
Open Hashing

In an *open hashing* scheme, key-value pairs are stored externally (for example as a linked list).



Hash Collisions (Open Hashing)

A *hash collision* in an open hashing scheme can be resolved by . This is called *separate chaining*.



Insertion (Separate Chaining)

1

Key	Value	Hash
Bob	B+	2
Anna	A-	4
Alice	A+	4
Betty	В	2
Brett	A-	2
Greg	А	0
Sue	В	7
Ali	B+	4
Laura	А	7
Lily	B+	7

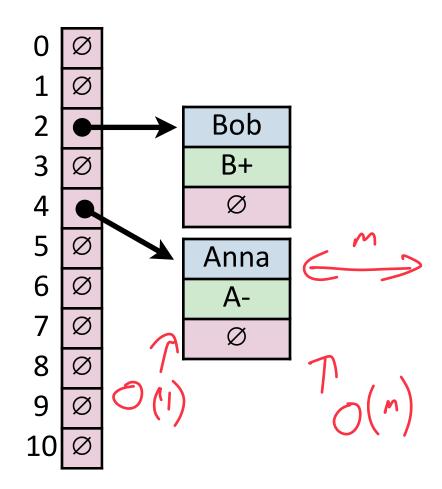
0	Ø	
1	Ø	
2	Ø	-7 Bob
3	Ø	
4	Ø	> Anna
5	Ø	
6	Ø	
7	Ø	
8	Ø	
9	Ø	
10	Ø	

```
_insert("Bob")
insert("Anna")
```

Insertion (Separate Chaining) __insert("Alice")

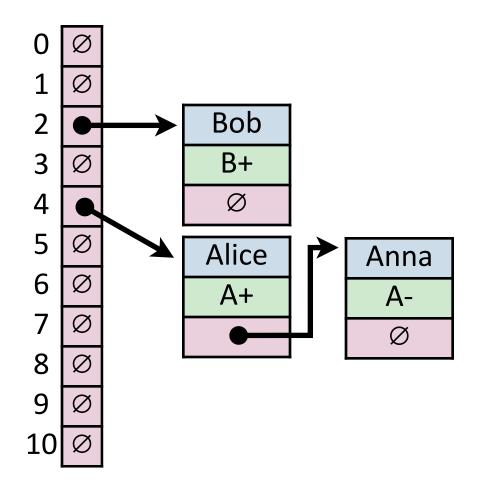
Where does Alice end up in the hash table?

Key	Value	Hash
Bob	B+	2
Anna	A-	4
Alice	A +	4
Betty	В	2
Brett	A-	2
Greg	А	0
Sue	В	7
Ali	B+	4
Laura	А	7
Lily	B+	7



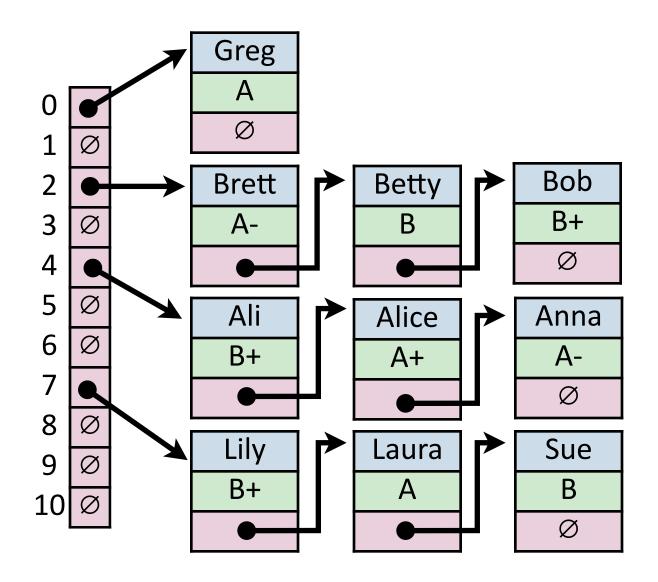
Insertion (Separate Chaining)

Key	Value	Hash
Bob	B+	2
Anna	A-	4
Alice	A+	4
Betty	В	2
Brett	A-	2
Greg	А	0
Sue	В	7
Ali	B+	4
Laura	А	7
Lily	B+	7



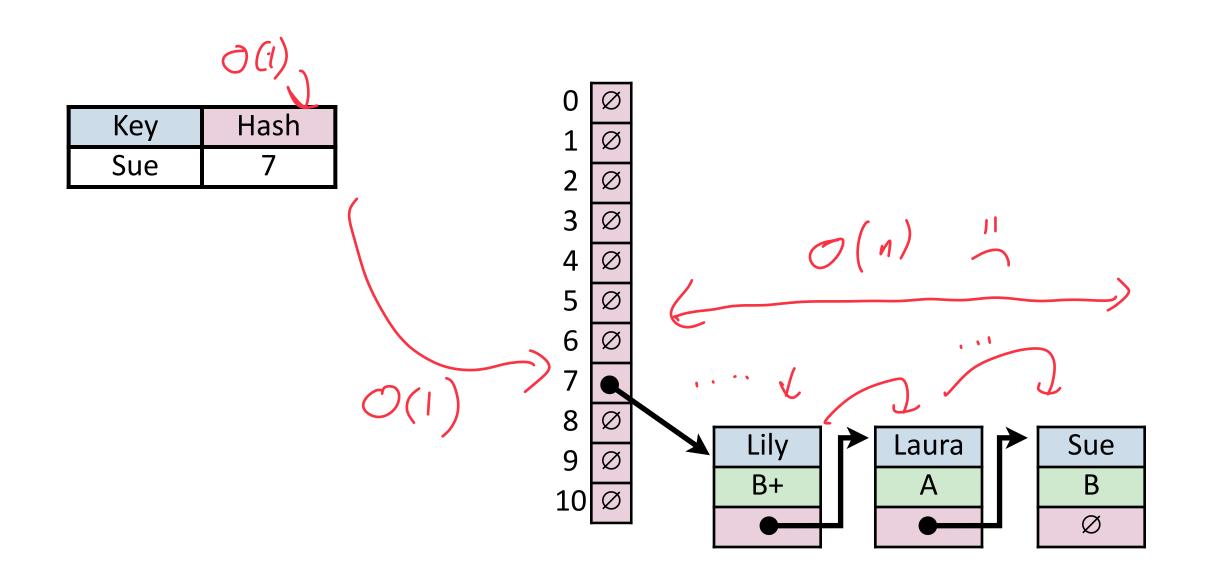
Insertion (Separate Chaining)

Key	Value	Hash
Bob	B+	2
Anna	A-	4
Alice	A+	4
Betty	В	2
Brett	A-	2
Greg	А	0
Sue	В	7
Ali	B+	4
Laura	А	7
Lily	B+	7



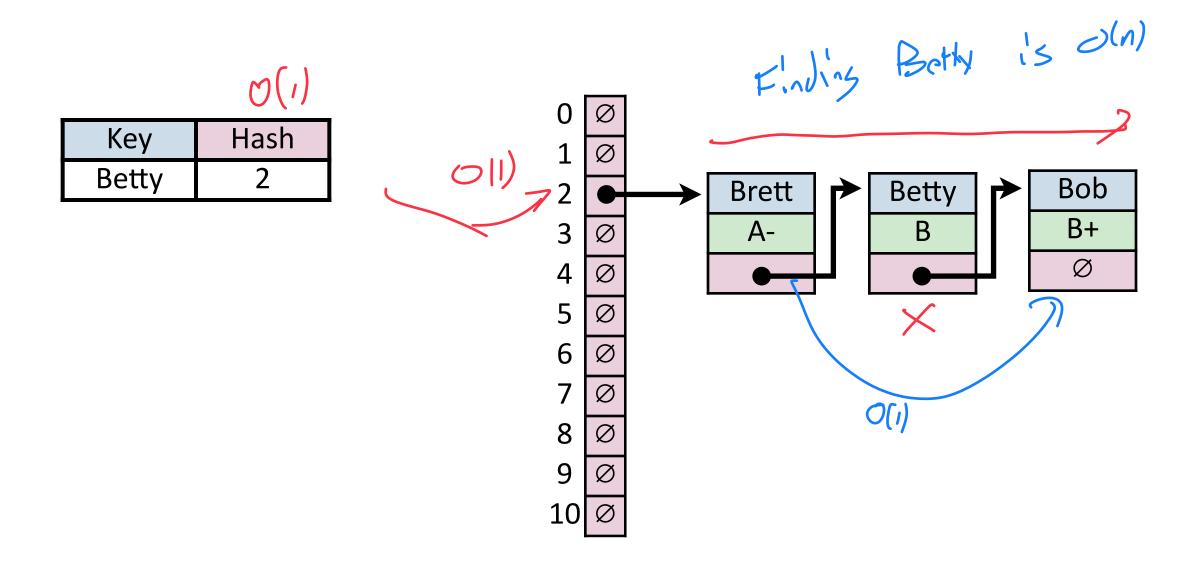
Find (Separate Chaining)

_find("Sue")



Remove (Separate Chaining)

_remove("Betty")



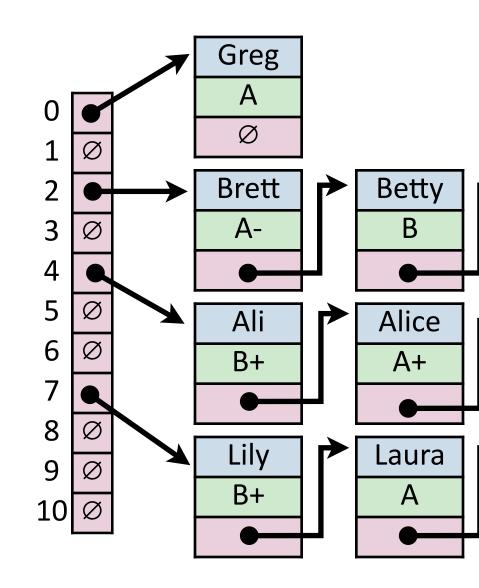
Hash Table (Separate Chaining)

For hash table of size *m* and *n* elements:

Find runs in:

Insert runs in:

Remove runs in:



Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

2) Create a *universal hash function family:*

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, h, implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2 \text{ , } Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform:

Independent:

Table Size: *m*

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

Num objects: n

 α_i = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

Table Size: *m*

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

Num objects: n

 α_i = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$$

Table Size: *m*

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

Num objects: n

 α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$E[\alpha_{j}] = E\left[\sum_{i} H_{i,j}\right]$$

$$E[\alpha_{j}] = \sum_{i} Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$$

Table Size: *m*

Claim: Under SUHA, expected length of chain is $\frac{n}{-}$

Num objects: *n*

 α_i = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

m

$$E[\alpha_j] = E\left[\sum H_{i,j}\right]$$

$$E[\alpha_j] = \sum_{i}^{r} Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

Table Size: *m*

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

Num objects: n

 α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$$

$$Pr[H_{i,j} = 1] = \frac{1}{m}$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

Claim: Under SUHA, expected length of chain is — Table Size: m

 α_i = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

$$\mathbf{E}[\alpha_{\mathbf{j}}] = \frac{\mathbf{n}}{\mathbf{m}}$$

$$\frac{n}{m}$$
 Table Size: m

Num objects: n

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$Pr[H_{i,j} = 1] = \frac{1}{m}$$

Under SUHA, a hash table of size m and n elements:

Find runs in: _____.

Insert runs in: ______.

Remove runs in: ______.

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Pros:

Cons:

Next time: Closed Hashing

Closed Hashing: store *k*, *v* pairs in the hash table

