Data Structures and Algorithms Probability in Computer Science

CS 225 Brad Solomon November 10, 2025

Department of Computer Science

Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of 'random' in computer science

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness

somewhere in its implementation.

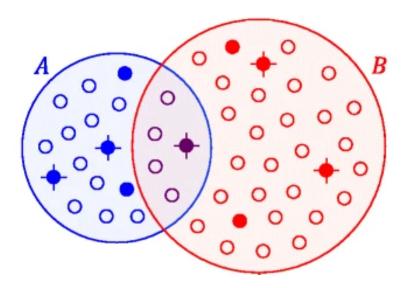
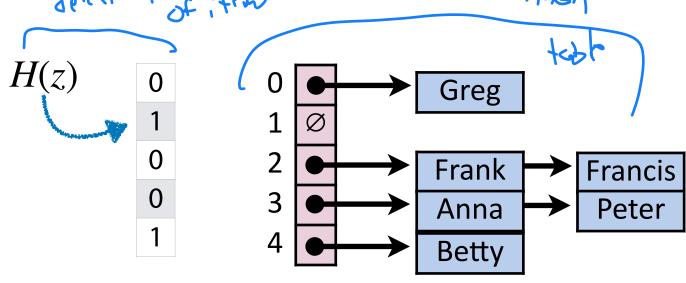



Figure from Ondov et al 2016

H(x)	0	2	1	0	0	4	0	2	0	6	Conta
H(y)	1	0	2	3	1	0	3	4	0	1	(Our 1>
H(z)	2	1	0	2	0	1	0	0	7	2	

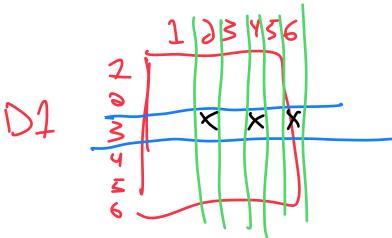
A faulty list

Imagine you have a list ADT implementation except...

Every time you called **insert**, it would fail 50% of the time.

4 Website (aching

Quick Primes with Fermat's Primality Test


If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

The a=
$$\lambda$$
 | $\frac{21853}{2500\%}$ which are composite but $\frac{2500\%}{2500\%}$ | Basically 0,00...%

Imagine you roll a pair of six-sided dice.

The **sample space** Ω is the set of all possible outcomes.

An **event** $E \subseteq \Omega$ is any subset.

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The **expectation** of a (discrete) random variable is:
$$E[X] = \sum_{x \in \Omega} \Pr\{X = x\} \cdot x$$

$$\Pr\{b \in \mathcal{S} : x \in \mathcal{S}$$

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$
 (Claim)

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$

$$E[X + Y] = \sum_{x} \sum_{y} Pr\{X = x, Y = y\}(x + y)$$

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$

$$E[X + Y] = \sum_{x} \sum_{y} Pr\{X = x, Y = y\}(x + y)$$

$$= \sum_{x} x \sum_{y} Pr\{X = x, Y \neq y\} + \sum_{y} y \sum_{x} Pr\{X \neq x, Y = y\}$$

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$

$$E[X + Y] = \sum_{x} \sum_{y} Pr\{X = x, Y = y\}(x + y)$$

$$= \sum_{x} x \sum_{y} Pr\{X = x, Y = y\} + \sum_{y} y \sum_{x} Pr\{X = x, Y = y\}$$

$$= \sum_{x} x \cdot Pr\{X = x\} + \sum_{y} y \cdot Pr\{Y = y\}$$

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X+Y] = E[X] + E[Y]$$

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

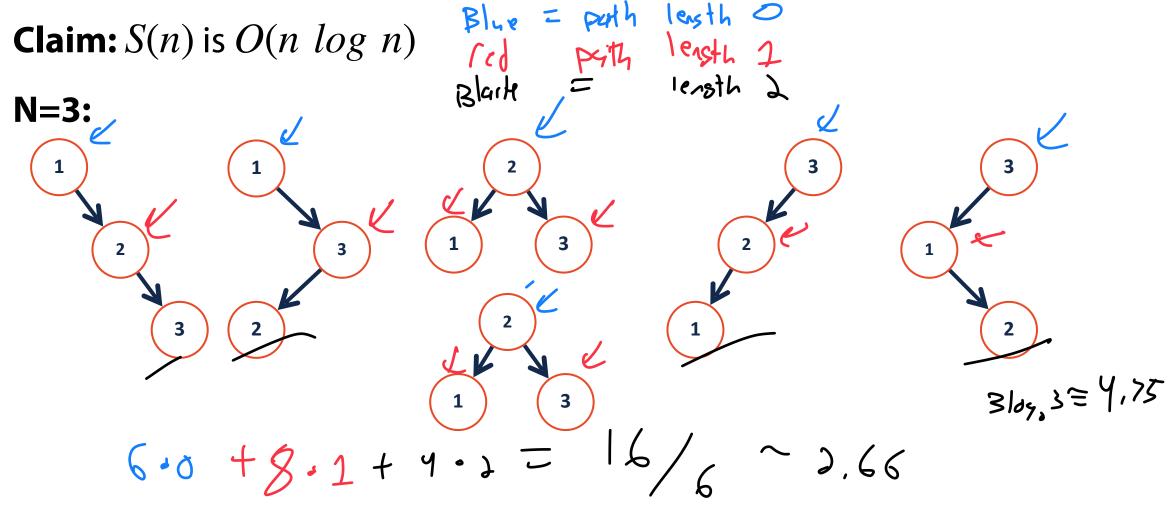
2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Claim: S(n) is $O(n \log n)$

N=3: AllBuild() with every possible permutation of insert order



Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Let S(n) be the **average** total internal path length **over all BSTs** that can be constructed by uniform random insertion of n objects

Let $0 \le i \le n-1$ be the number of nodes in the left subtree.

Then for a fixed i, S(n) = (n - 1) + S(i) + S(n - i - 1)

$$S(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n-i-1) \approx cn \ln n$$

Laisely Sk.1p.

Let S(n) be the **average** total internal path length **over all BSTs** that can be constructed by uniform random insertion of n objects

Let $0 \le i \le n-1$ be the number of nodes in the left subtree.

Then for a fixed
$$i$$
, $S(n) = (n-1) + S(i) + S(n-i-1)$

$$S(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n-i-1) \approx cn \ln n$$

$$T_L$$

$$T_R$$

$$f_1 \text{ to path}$$

$$i \quad n-i-1$$

Here's a slide of math you should not bother learning (in the context of CS 225)

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} S(i)$$
 (1) Guess recurrence form $S(i) = c * i ln(i)$

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} (ci \ ln \ i)$$
 (2) Plug in recurrence

$$S(n) \le (n-1) + \frac{2}{n} \int_{1}^{n} (cx \ln x) dx \quad (3) \sum_{i=1}^{n-1} f(i) \equiv \int_{1}^{n} f(x) dx$$

$$S(n) \le (n-1) + \frac{2}{n} \left(\frac{cn^2}{2} \ln n - \frac{cn^2}{4} + \frac{c}{4}\right) \approx cn \ln n$$

(4) $(cx \ln x) dx$ can be expanded as shown above.

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

 $S(n) \approx (n \log n)$ is provable but a weak argument! **Why?**

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

 $S(n) \approx (n \log n)$ is provable but a weak argument! Why? or page likely

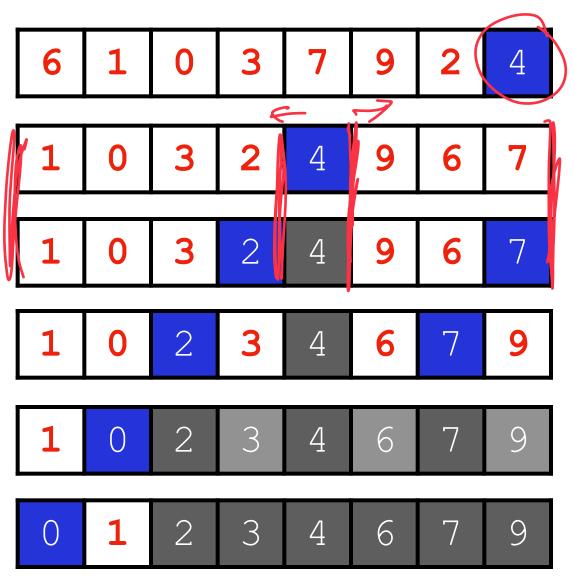
Randomness: Input dataset is considered random

Arguably to extend analysis to 'find' we also assume query is random.

Assumptions: Input dataset is uniform random in content and order Same assumptions then extended to query

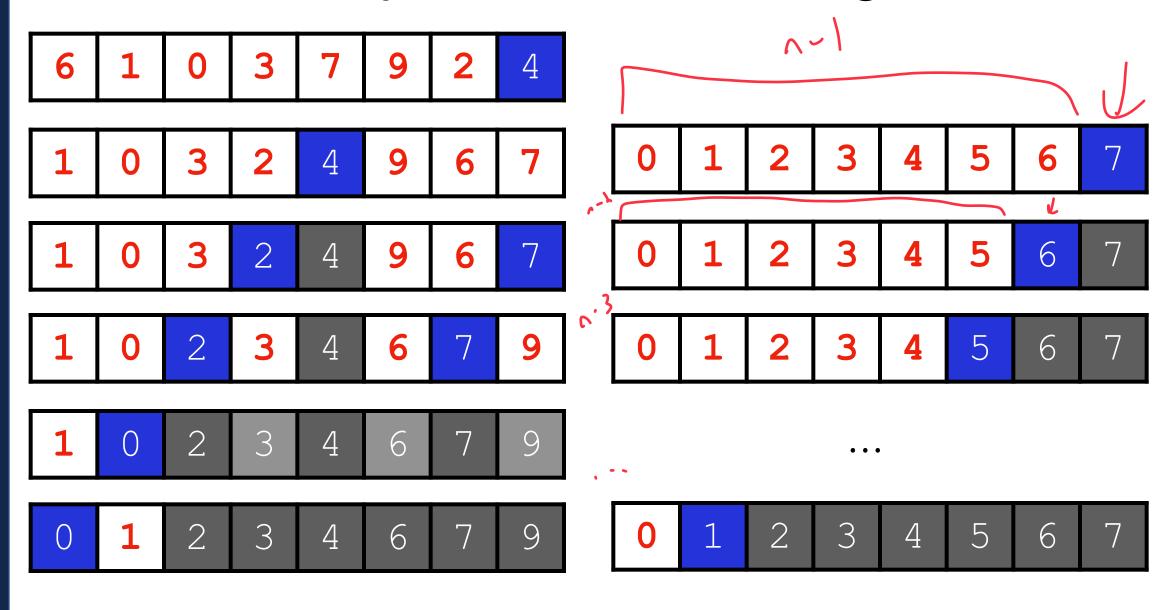
Randomization in Algorithms

1. Assume input data is random to estimate average-case performance


2. Use randomness inside algorithm to estimate expected running time

Galgnight take a while but will work 100%

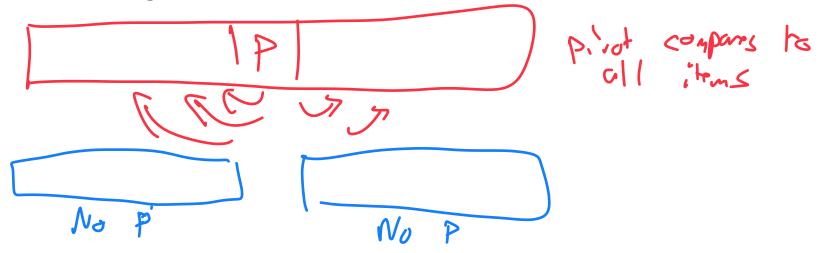
3. Use randomness inside algorithm to approximate solution in fixed time


4) Alg runs fast but may not be correct

Quicksort Algorithm

- 1) Pick Pivot (usually last item)
- 2) Split array around pivot
- 3) Recurse on partitions

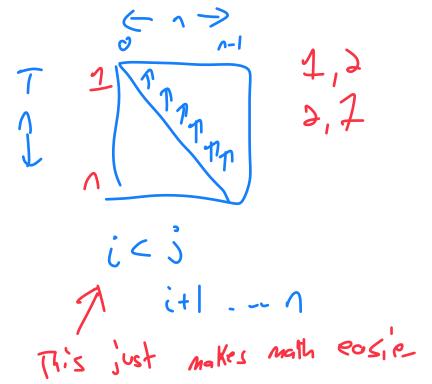
Problem: Bad pivot leads to bad Big O!


In **randomized quicksort**, the selection of the pivot is random.

Claim: The expected time is $O(n \log n)$ for any input!

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion


In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is $O(n \log n)$ for any input!

Let X be the total comparisons and X_{ij} be an **indicator variable**:

$$X_{ij} = \begin{cases} 1 \text{ if } i \text{th object compared to } j \text{th} \\ 0 \text{ if } i \text{th object not compared to } j \text{th} \end{cases}$$

Then...

In randomized quicksort, the selection of the pivot is random.

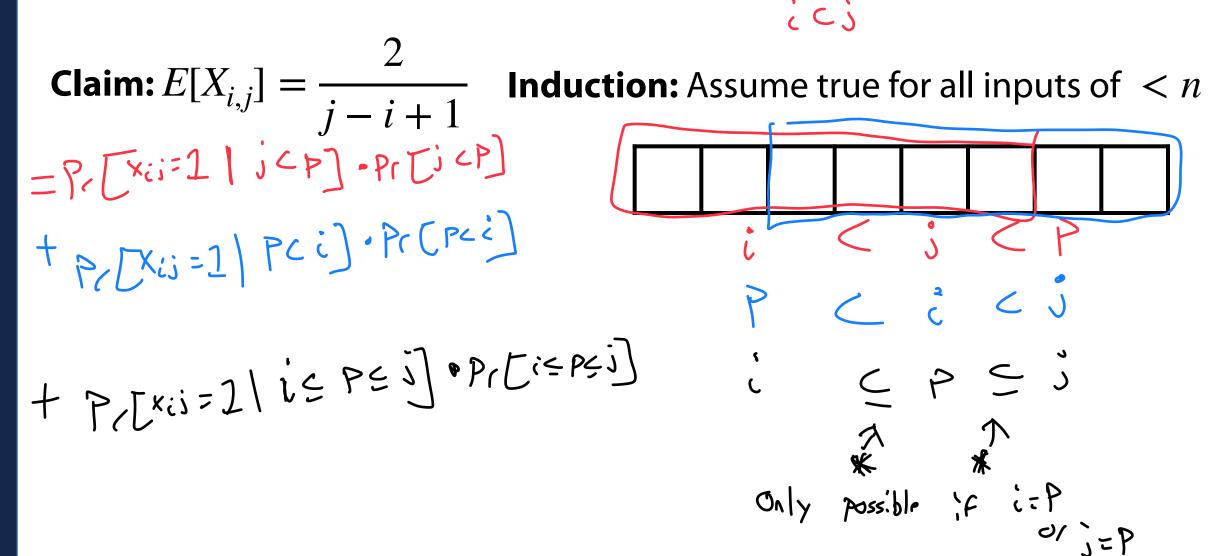
Claim: The expected time is $O(n \log n)$ for any input!

Let X be the total comparisons and X_{ij} be an **indicator variable**:

$$X_{ij} = \begin{cases} 1 \text{ if } i \text{th object compared to } j \text{th} \\ 0 \text{ if } i \text{th object not compared to } j \text{th} \end{cases}$$

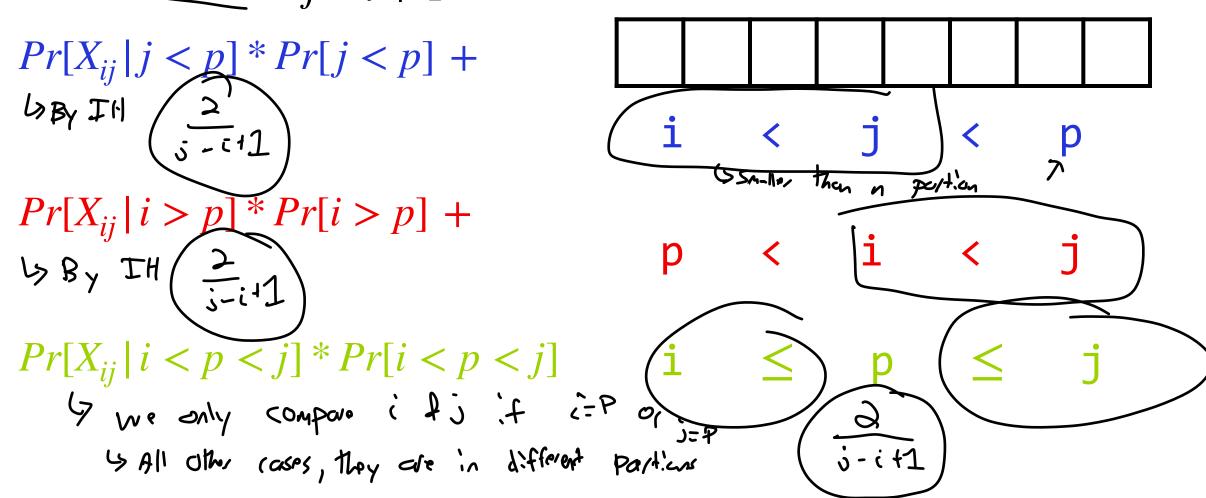
Then...
$$X = \sum_{i}^{n} \sum_{j=i+1}^{n} X_{i,j}$$

We can prove that $E[X] = O(n \log n)$ with a **proof by induction**!


To show $E[X] = O(n \log n)$, we need to first get $E[X_{i,j}]$

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$
.

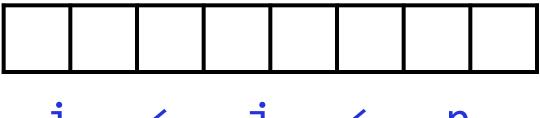
$$\frac{2}{i+1-i+1} = \frac{2}{3} + \int$$


Base Case: (N=2)

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$

Induction: Assume true for all inputs of < n

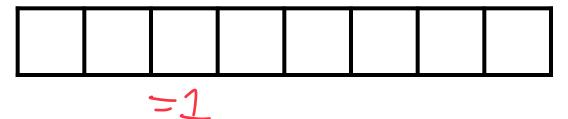

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$
 Induction: Assume true for all inputs of $< n$

$$Pr[X_{ij}|j < p] * Pr[j < p] +$$

By IH,
$$\frac{2}{j-i+1}$$

$$Pr[X_{ij} \mid i > p] * Pr[i > p] +$$
 By IH,
$$\frac{2}{j-i+1}$$

$$Pr[X_{ij} | i$$



$$i \leq p \leq 7$$

Pivot must be either i or j — happens twice so
$$\frac{2}{j-i+1}$$

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$
 Induction: Assume true for all inputs of $< n$

$$\frac{1}{j-i+1}$$

We can rewrite as:
$$\frac{2}{j-i+1} * \left(Pr[j < p] + Pr[i > p] + Pr[i \le p \le j] \right)$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}\right)$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}\right)$$

$$E[X] = \sum_{i=1}^{n} 2(H_{n-1} - 1) \le 2n \cdot H_n \le 2n \ln n$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} 2(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1})$$
 (1) Expand out inner sum

$$E[X] = \sum_{i=1}^{n} 2(H_{n-1} - 1)$$
 (2) $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

$$E[X] = \sum_{i=1}^{n} 2(H_{n-1} - 1) \le 2n \cdot H_n \le 2n \ln n \text{ (3) } H_n = \theta(\log n)$$

Summary: Randomized quick sort is $O(n \log n)$ regardless of input

Randomness:

Assumptions:

Summary: Randomized quick sort is $O(n \log n)$ regardless of input

Randomness: The choice of pivot at each step

The analysis here works for any choice of input dataset!

Assumptions: Only that random numbers are actually random

While strictly not true, generally an acceptable assumption in practice

Ex: Park, Kyung Hwan, et al. "High rate true random number generator using beta radiation." AIP Conference Proceedings. Vol. 2295. No. 1. AIP Publishing LLC, 2020.

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Pick a random a in the range [2, p-2]

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

	$a^{p-1} \equiv 1 \pmod{p}$	$a^{p-1} \not\equiv 1 \pmod{p}$
	100%	0/0
<i>p</i> is prime		
p is not prime	Some FPR (= FPR ecror!	

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

Repealed Condom toicks

B/c 100% if not prime is see

What is our false positive probability? Our false negative probability?

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness: The choice of α .

We can even pick more than one α if we want!

Assumptions: Only that random numbers are actually random

While strictly not true, generally an acceptable assumption in practice

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

What type of algorithm is Fermat's primality test?

What type of algorithm is randomized quick sort?

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on **expected** performance

Randomized data structures 'cheat' tradeoffs!