Data Structures and Algorithms (All Pairs Shortest Path (Plus Review)

CS 225 Brad Solomon November 7, 2025

Department of Computer Science

Learning Objectives

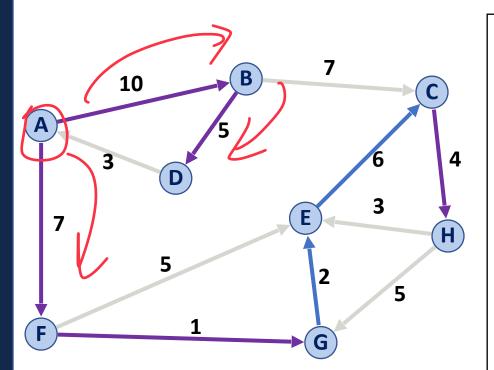
Introduce and discuss All-Pairs Shortest Path

Review deterministic data structures in CS

An opportunity for Q&A for exam 4

Foreshadowing probabilistic data structures

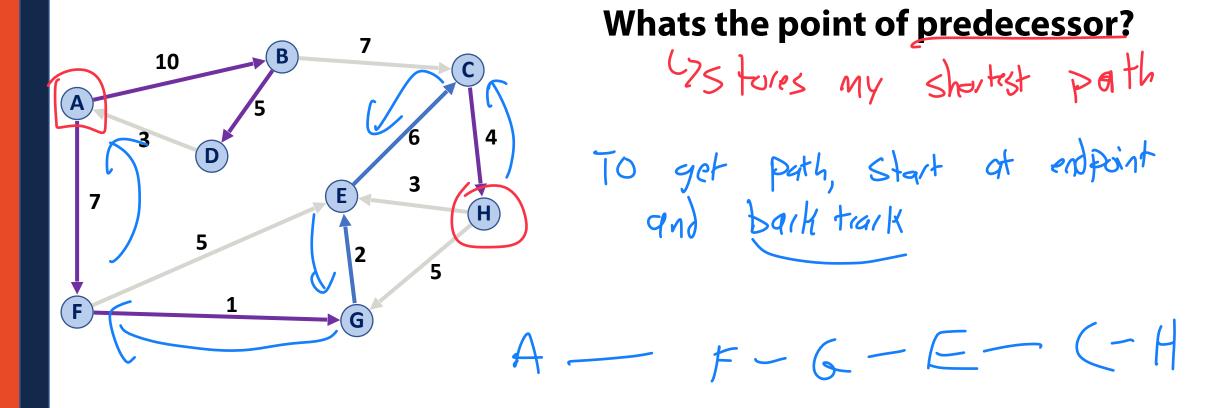
Dijkstra's Algorithm (SSSP) Shortest Path



```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
13
     Graph T // "labeled set"
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = u
```

Α	В	С	D	E	F	G	Н
	Α	E	В	G	Α	F	С
0	10	16	15	10	7	8	20

	Only	9,46	W	Prim
5 5 M		hurtest		



Α	В	С	D	E	F	G	Н
	Α	E	В	G	A	F	$\left(c\right)$
0	10	16	15	10	7	8	20

 $O(m + n \log n)$

What is the running time of Dijkstra's Algorithm? The same as Prim's!

6-9: O(n)

11-12: O(n)

15: repeat below n x

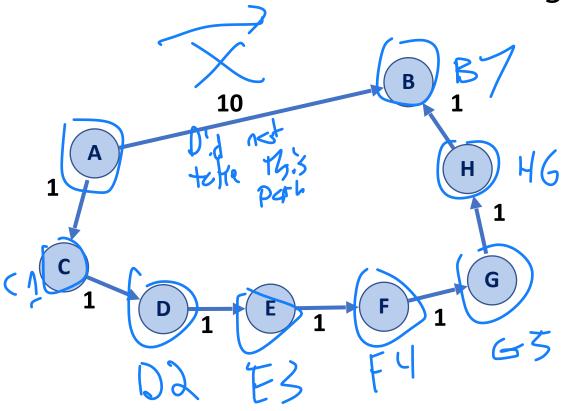
16-22: O(log n)

[w/ Fib Heap O(1) updates]

```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
12
     Q.buildHeap(G.vertices())
13
     Graph T // "labeled set"
14
15
     repeat n times:
       Vertex u = Q.removeMin()
16
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
         if cost(u, v) + d[u] < d[v]:
19
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = m
22
23
     return T
```

Claim: Dijkstras will always visit a node through its optimal shortest path.

When we will visit B in the following graph?



B (
$$\circ$$
C 1

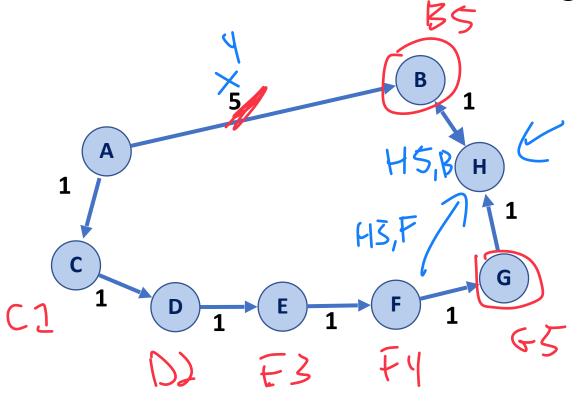
A \rightarrow B

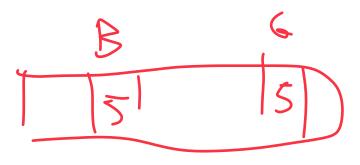
Must be smaller than 10

A \rightarrow B

Claim: Dijkstras will always visit a node through its optimal shortest path.

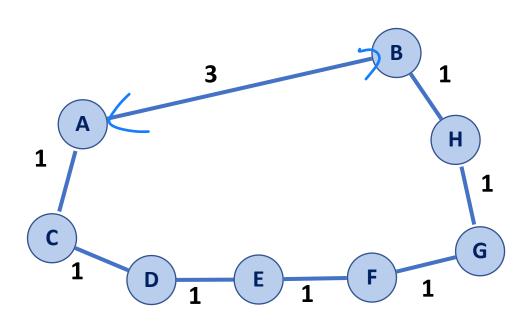
When we will visit H in the following graph?





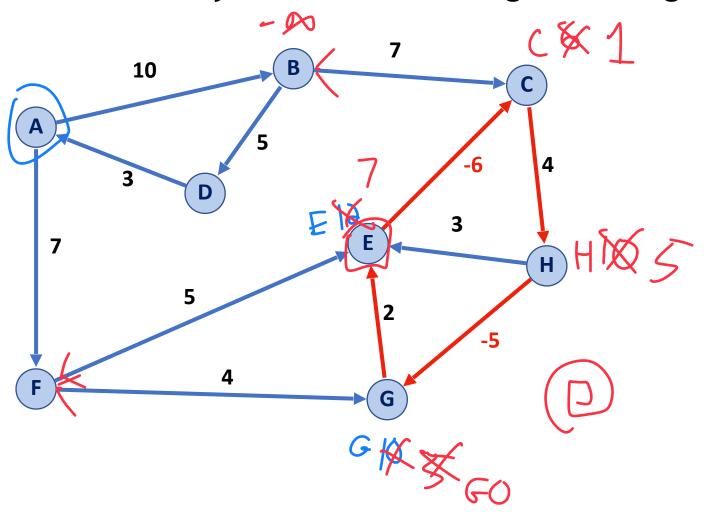
$$A \rightarrow$$
 $\rightarrow B$

How does Dijkstra's algorithm handle undirected graphs?

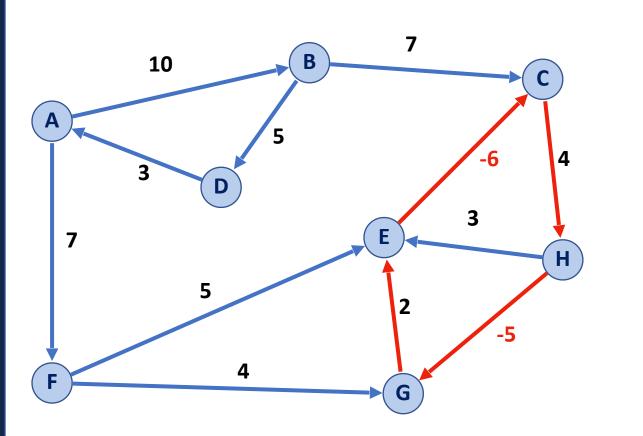


No Problem here!

How does Dijkstras handle a negative weight cycle?



How does Dijkstras handle a negative weight cycle?

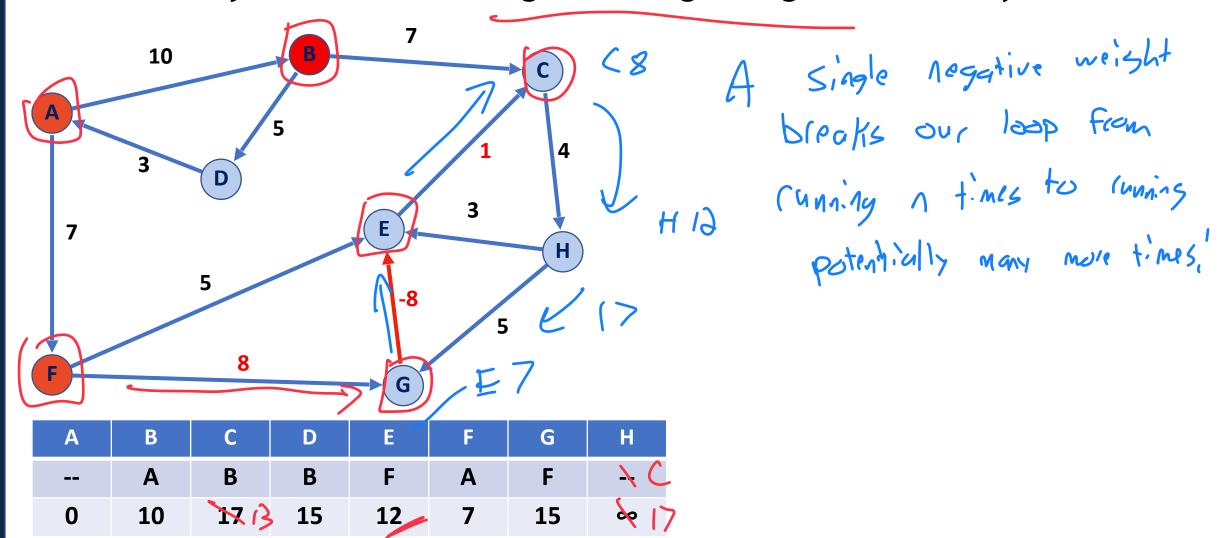


Doesnt well!

Shortest Path (A \rightarrow E): A \rightarrow F \rightarrow E \rightarrow (C \rightarrow H \rightarrow G \rightarrow E)* Length: 12

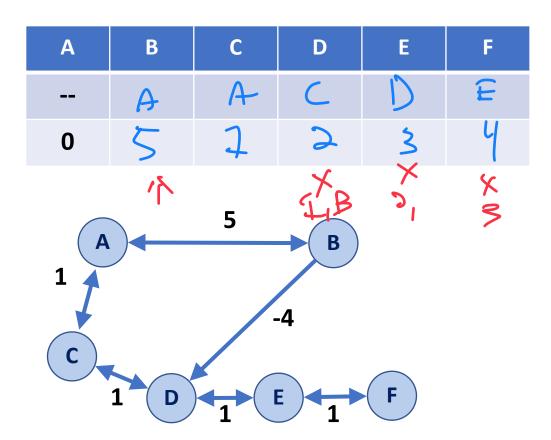
Length: -5 (repeatable)

How does Dijkstras handle a negative weight edge without a cycle?

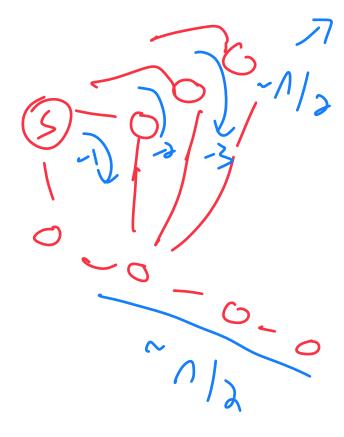


We assume that item pulled out of priority queue is the next smallest item

Negative weights break this assumption!



Recalculating all distances is possible, but algorithm runtime is very bad!



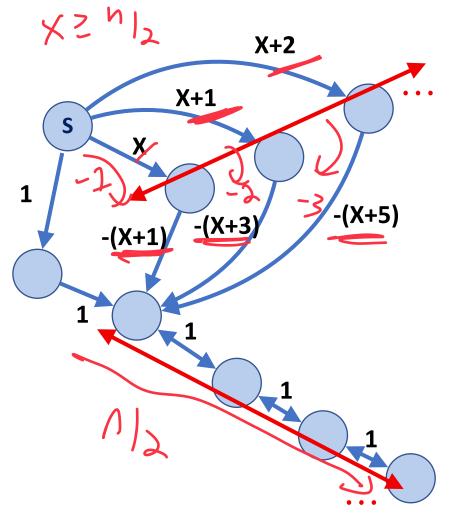
Tangent Point

```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat until Q.empty():
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T);
19
         if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = m
           if v not in Q:
22
23
              Q.push(v)
24
     return T
```

A factor of 13 Welso

Recalculating all distances is possible, but algorithm runtime is very bad!

Worst case: ~n/2 nodes each updating ~n/2 nodes distances



```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
     repeat until Q.empty():
15
16
       Vertex u = Q.removeMin()
       T.add(u)
       foreach (Vertex v : neighbors of u not in T):
18
19
          if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
           if v not in Q:
Q.push(v)

Alkows regalive weight
21
22
23
24
     return T
```


Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Fibonacci Heap

If dense, unsorted list ties

Optimal runtime:

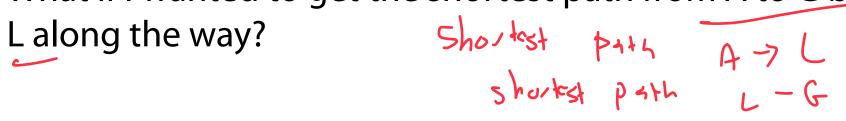
Sparse: $O(m + n \log n)$

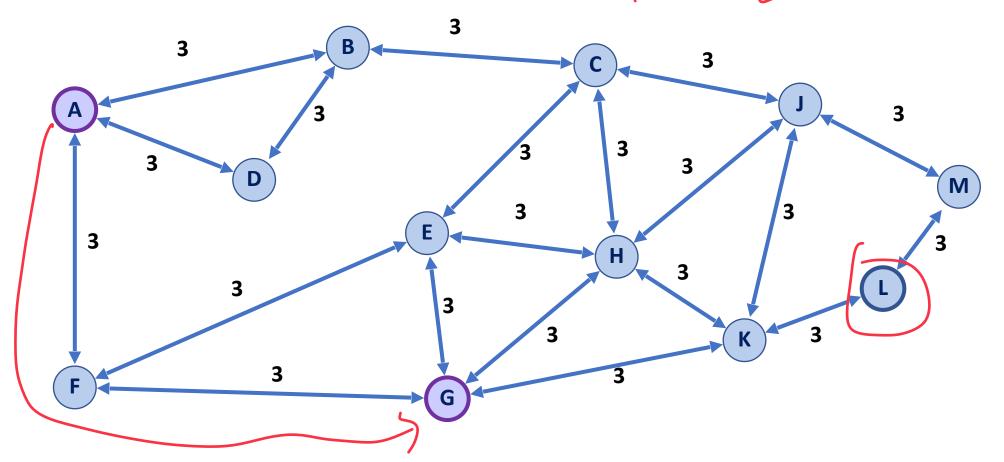
Dense: O(n²)

```
DijkstraSSSP(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
     repeat n times:
15
16
       Vertex u = Q.removeMin()
17
       T.add(u)
       foreach (Vertex v : neighbors of u not in T):
18
         if cost(u, v) + d[u] < d[v]:
19
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = m
22
23
     return T
```

Landmark Path Problem

What if I wanted to get the shortest path from A to G but stopping at

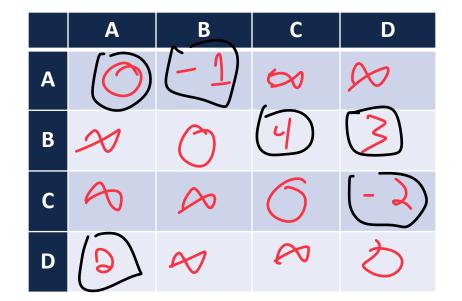


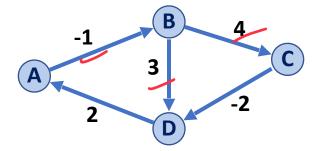


Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
Matte a matrix
   FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
d[u][v] = cost(u, v)
                                          motrix
     foreach (Vertex u : G):
       foreach (Vertex v : G):
10
         foreach (Vertex w : G):
           if (d[u, v] > d[u, w] + d[w, v])
11
             d[u, v] = d[u, w] + d[w, v]
12
            Is there a sharter
```

```
1 FloydWarshall(G):
2  Let d be a adj. matrix initialized to +inf
3  foreach (Vertex v : G):
4  d[v][v] = 0
5  foreach (Edge (u, v) : G):
6  d[u][v] = cost(u, v)
```

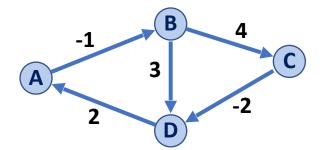




```
8    foreach (Vertex w : G):
9     foreach (Vertex u : G):
10         foreach (Vertex v : G):
11         if (d[u, v] > d[u, w] + d[w, v])
12         d[u, v] = d[u, w] + d[w, v]
```

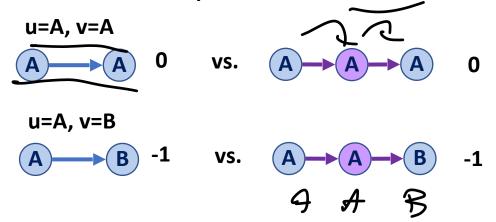
Let us consider comparisons where w = A:

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0



```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

Let us consider comparisons where w = A:

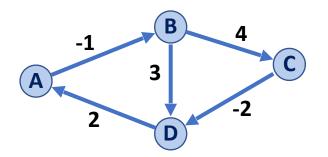


Don't waste time if u=w or v=w!

Let **w** be midpoint
Let **u** be start point
Let **v** be end point

Is our distance shorter now?

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	∞	0



```
8    foreach (Vertex w : G):
9     foreach (Vertex u : G):
10         foreach (Vertex v : G):
11         if (d[u, v] > d[u, w] + d[w, v])
12         d[u, v] = d[u, w] + d[w, v]
```

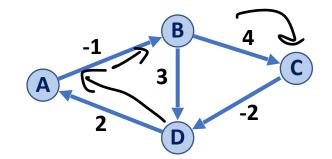
Let us consider w = A (and u != w and v != w):

Let **w** be midpoint ←

Let **v** be end point

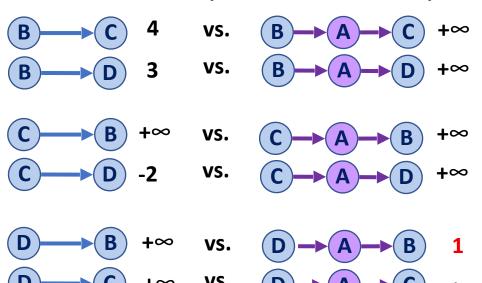
Is our distance shorter now?

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	×1	∞	0



```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

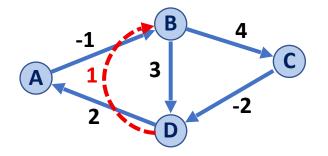
Let us consider w = A (and u != w and v != w):



Let **w** be midpoint
Let **u** be start point
Let **v** be end point

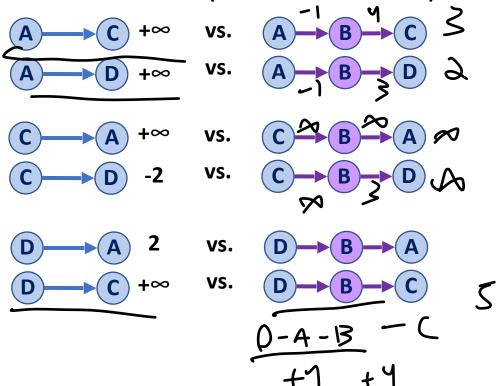
Is our distance shorter now?

	Α	В	С	D
A	0	-1	∞	∞
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0

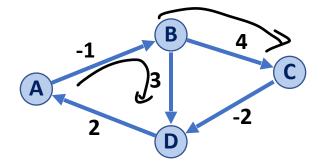


```
8   foreach (Vertex w : G):
9   foreach (Vertex u : G):
10   foreach (Vertex v : G):
11   if (d[u, v] > d[u, w] + d[w, v])
12   d[u, v] = d[u, w] + d[w, v]
```

Let us consider w = B (and u != w and v != w):



	Α	В	С	D
A	0	-1	% 3	* 7
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	% 5	0



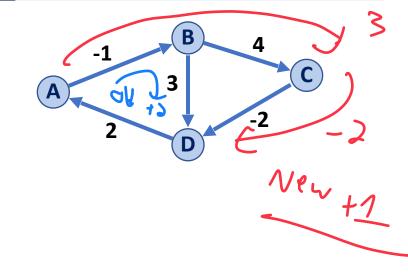
```
foreach (Vertex w : G):
       foreach (Vertex u : G):
10
         foreach (Vertex v : G):
11
            if (d[u, v] > d[u, w] + d[w, v])
12
              d[u, v] = d[u, w] + d[w, v]
```

A - B - (- D

Let us consider w = C (and u != w and v != w):

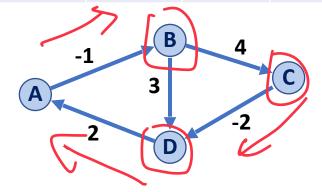
A → B -1	vs.	A → C → B +∞
A 2	vs.	$A \rightarrow C \rightarrow D$
		3 -2
B → A +∞	vs.	B → C → A +∞
B 3	VS.	$B \rightarrow C \rightarrow D$
D A 2	vs.	D → C → A +∞

	Α	В	С	D
A	0	-1	3	X 2
В	∞	0	4	X 3
С	∞	∞	0	-2
D	2	1	5	0



```
1  FloydWarshall(G):
2    Let d be a adj. matrix initialized to +inf
3    foreach (Vertex v : G):
4    d[v][v] = 0
5    foreach (Edge (u, v) : G):
6    d[u][v] = cost(u, v)
7
8    foreach (Vertex u : G):
9    foreach (Vertex v : G):
10         foreach (Vertex w : G):
11         if (d[u, v] > d[u, w] + d[w, v])
12         d[u, v] = d[u, w] + d[w, v]
```

	Α	В	С	D
A	0	-1	3	1
В	5	0	4	2
С	0	(-1)	0	-2
D	2	1	5	0



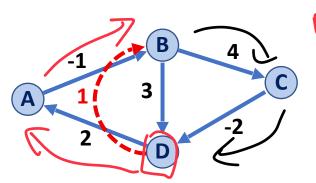
Running time?


```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex u : G):
13
       foreach (Vertex v : G):
14
         foreach (Vertex w : G):
15
           if d[u, v] > d[u, w] + d[w, v]:
16
             d[u, v] = d[u, w] + d[w, v]
```

We aren't storing path information! Can we fix this?

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
     foreach (Edge (u, v) : G):
10
       d[u][v] = cost(u, v)
11
12
     foreach (Vertex w : G):
13
       foreach (Vertex u : G):
14
         foreach (Vertex v : G):
           if (d[u, v] > d[u, w] + d[w, v])
15
16
              d[u, v] = d[u, w] + d[w, v]
```

```
FloydWarshall(G):
     Let d be a adj. matrix initialized to +inf
     foreach (Vertex v : G):
       d[v][v] = 0
       s[v][v] = 0  
10
     foreach (Edge (u, v) : G):
11
       d[u][v] = cost(u, v)
       s[u][v] = v sinsk etge tells -s dene
12
13
14
     foreach (Vertex w : G):
15
       foreach (Vertex u : G):
16
         foreach (Vertex v : G):
17
            if (d[u, v] > d[u, w] + d[w, v])
18
             d[u, v] = d[u, w] + d[w, v]
19
             s[u, v] = s[u, w]
```



Opposite part storage

A	-B-D	
A	-B-(-	D

	Α	В	С	D
Α	0	-1	∞	×1
В	∞	0	4	3
С	∞	∞	0	-2
D	2	1	∞	0

	А	В	С	D	
A	i f destinatio, don	B	د	→ B ~	>
В			С	X	,
С				D	K
D	Α	A			

We have only scratched the surface on graphs!

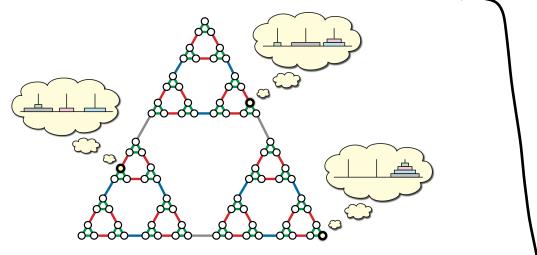


Image from Jeff Erickson Algorithms First Edition

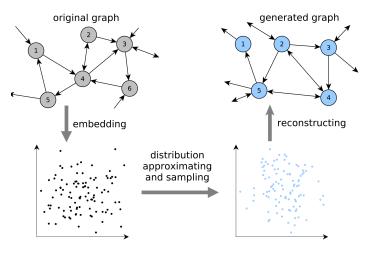
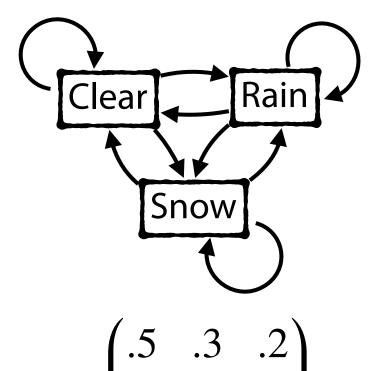


Image from Drobyshevskiy et al. Random graph modeling: A survey of the concepts. 2019



$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix}$$

Lets review what we've seen so far!

Lets review what we've seen so far!

Lists

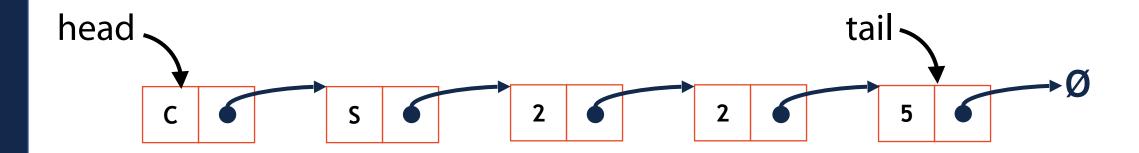
The not-so-secret underlying implementation for many things

	Singly Linked List	Array
Look up arbitrary location	0(n)	0(1)
Insert after given element	0(1)	O(n)
Remove after given element	0(1)	O(n)
Insert at arbitrary location	0(n)	O(n)
Remove at arbitrary location	0(n)	O(n)
Search for an input value	0(n)	0(n)

Special Cases: insertFront insertBack (not full)

Stack and Queue

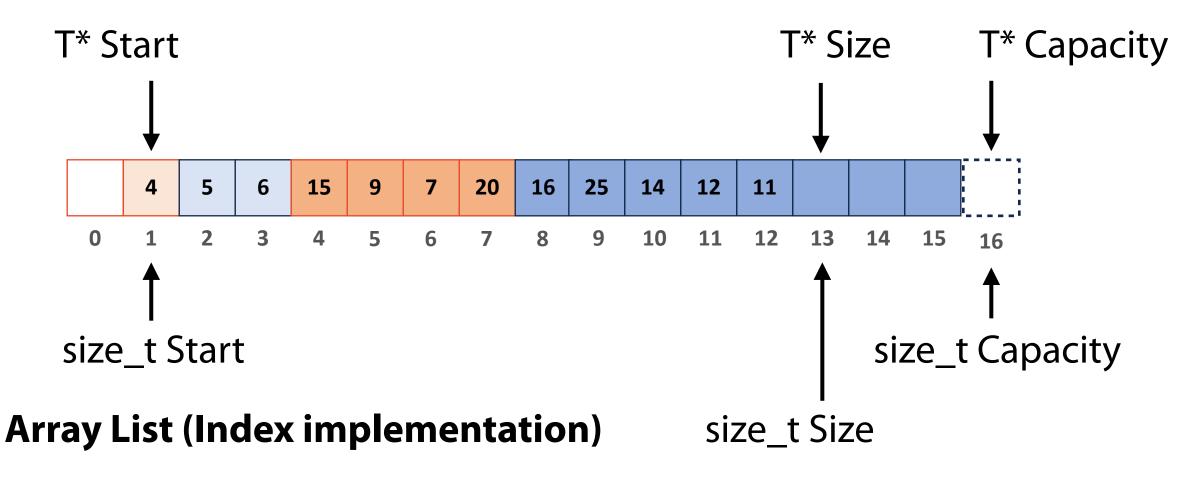
Taking advantage of special cases in lists / arrays



Heap

Taking advantage of special cases in lists / arrays

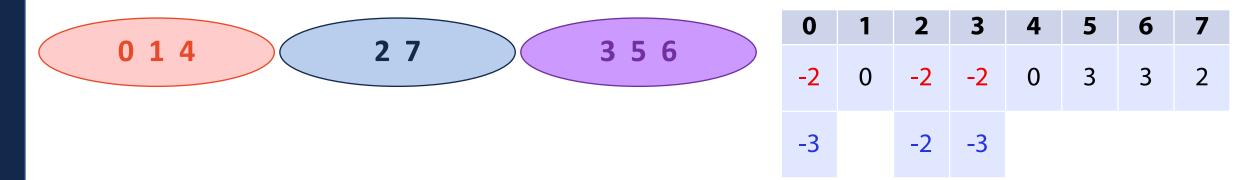
Array List (Pointer implementation)



Disjoint Set Implementation

Taking advantage of array lookup operations

Store an UpTree as an array, canonical items store height / size

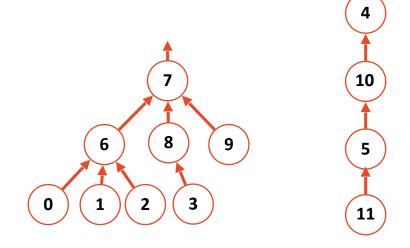


Find(k): Repeatedly look up values until negative value

Union(k_1 , k_2): Update *smaller* canonical item to point to larger Update value of remaining canonical item

Disjoint Sets - Smart Union

Minimizing number of O(1) operations



Union by height	0	1	2	3	4	5	6	7	8	9	10	11
	6	6	6	8	-4	10	7	4	7	7	4	5
Union by size	0	1	2	3	4	5	6	7	8	9	10	11
	6	6	6	8	7	10	7	-12	7	7	4	5

Idea: Keep the height of the tree as small as possible.

Idea: Minimize the number of nodes that increase in height

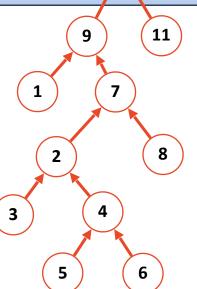
Both guarantee the height of the tree is: O(log n).

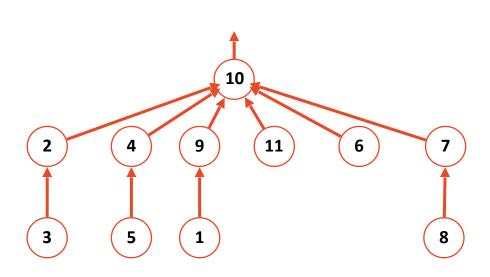
Find(6)

Disjoint Sets Path Compression

Minimizing number of O(1) operations

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else {
4    int root = find( s[i] );
5   s[i] = root;
6   return root;
7   }
8 }</pre>
```



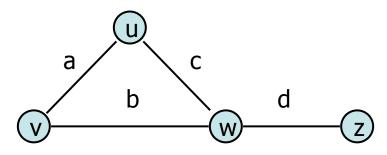


Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and path compression with **m** find calls and **n** items has a worst case running time of **inverse Ackerman.** $O(m \ \alpha(n))$

This grows very slowly to the point of being treated a constant in CS.

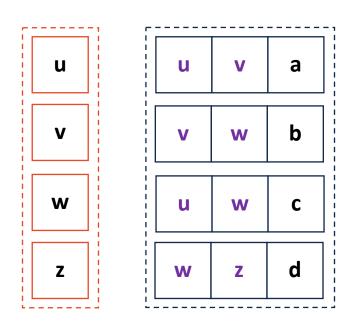
Graph Implementation: Edge List |V| = n, |E| = m



Literally just arrays

 $O(1)^*$

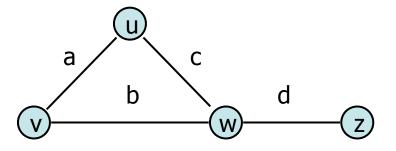
insertVertex(K key):
insertEdge(Vertex v1, Vertex v2, K key):



O(m)
removeVertex(Vertex v):
removeEdge(Vertex v1, Vertex v2, K key):
incidentEdges(Vertex v):
areAdjacent(Vertex v1, Vertex v2):

Graph Implementation: Adjacency Matrix

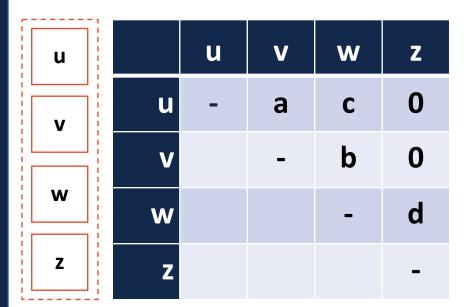
$$|V| = n, |E| = m$$



Literally just a matrix of arrays

O(1)

insertEdge(Vertex v1, Vertex v2, K key):
removeEdge(Vertex v1, Vertex v2, K key):
areAdjacent(Vertex v1, Vertex v2):



O(n)

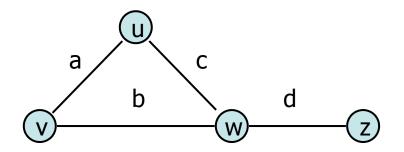
incidentEdges(Vertex v):

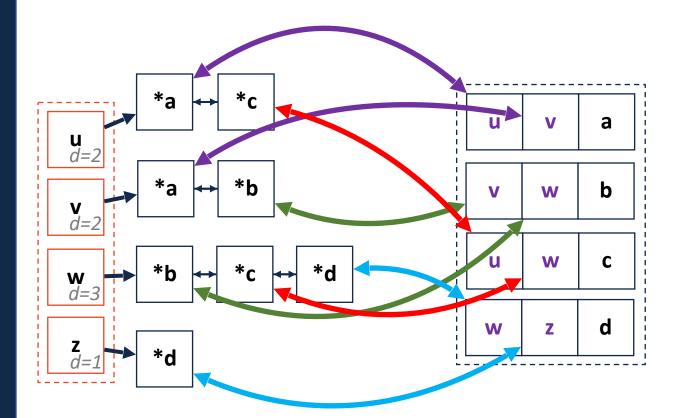
 $O(n) - O(n^2)$

insertVertex(K key):

removeVertex(Vertex v):

Adjacency List





Technically linked lists I guess

Expressed as O(f)	Adjacency List
Space	n+m
insertVertex(v)	1*
removeVertex(v)	deg(v)
insertEdge(u, v)	1*
removeEdge(u, v)	min(deg(u), deg(v))
incidentEdges(v)	deg(v)
areAdjacent(u, v)	min(deg(u), deg(v))

... And thats most of exam 4

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

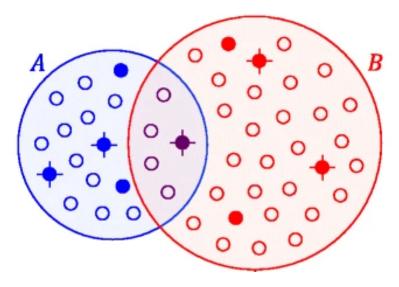
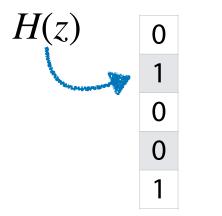
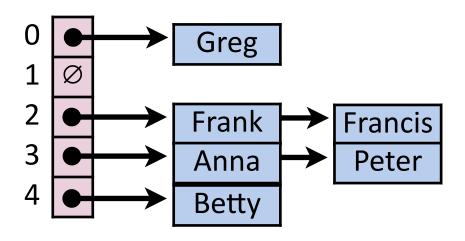


Figure from Ondov et al 2016





H(x)										
H(y)	1	0	2	3	1	0	3	4	0	1
H(z)	2	1	0	2	0	1	0	0	7	2

A faulty list

Imagine you have a list ADT implementation except...

Every time you called **insert**, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test

	$a^{p-1} \equiv 1 \pmod{p}$	$a^{p-1} \not\equiv 1 \; (mod p)$
p is prime		
p is not prime		

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions: