B Tree Analysis

CS 225 - Fall 2025

Mattox Beckman / Based on slides from Brad Solomon

Objectives

Objectives

- Explain the importance of m in the B Tree
- · Explain how delete preserves B Tree properties
- · Analyze the performance of a B Tree

A B Tree of order m is an m-ary tree

- · All keys are ordered
- A node contains no more than m-1 keys
- · Internal nodes have exactly one more child than keys
- · Intuition: how many keys / childern in a BST?
- · All leaves are on the same level

- root empty \Rightarrow return
- · leaf \Rightarrow do array find

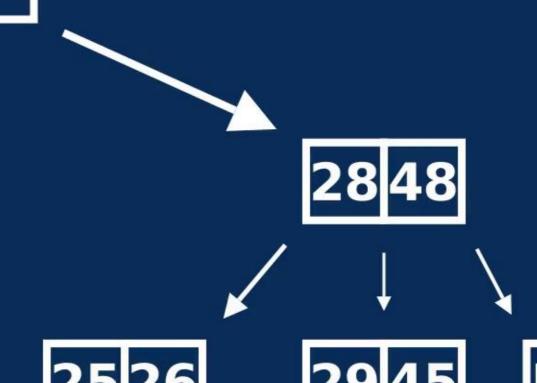
- Array find for first \geq key.
- · Recurse to appropriate child
- · Child index and key index are the same!

- \cdot root empty \Rightarrow return
- · leaf \Rightarrow do array find

find(6)

Recursive Case

- · Array find for first \geq key.
- · Recurse to appropriate child
- · Child index and key index are the same!



1 2

6 7

12 14 16

25 26

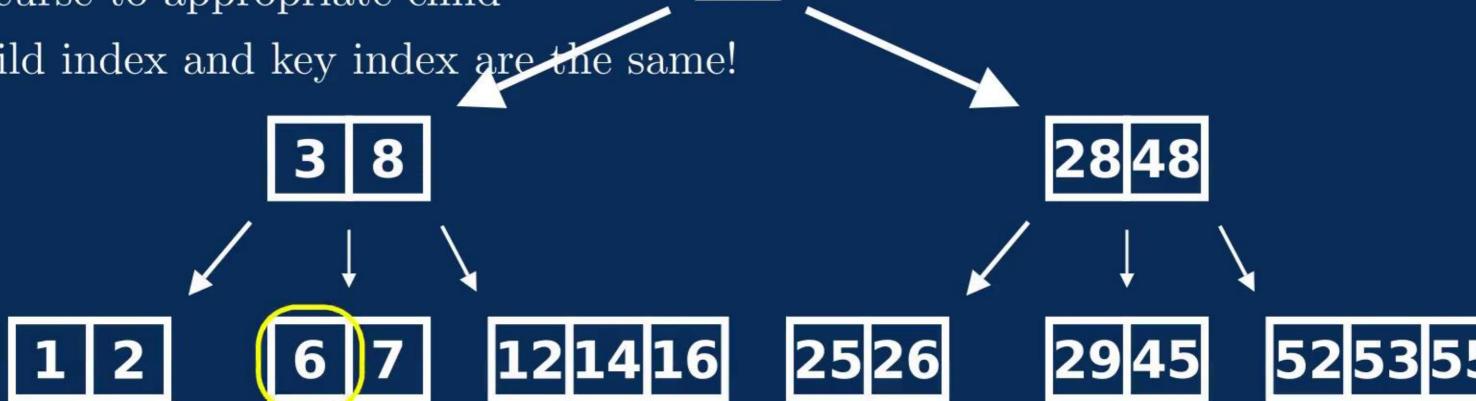
29 45

52 53 55

- \cdot root empty \Rightarrow return
- · leaf \Rightarrow do array find

find(6)

- · Array find for first \geq key.
- Recurse to appropriate child
- · Child index and key index are the same!



Find (Review)

B Tree Design

Base Case

- \cdot root empty \Rightarrow return
- · leaf \Rightarrow do array find

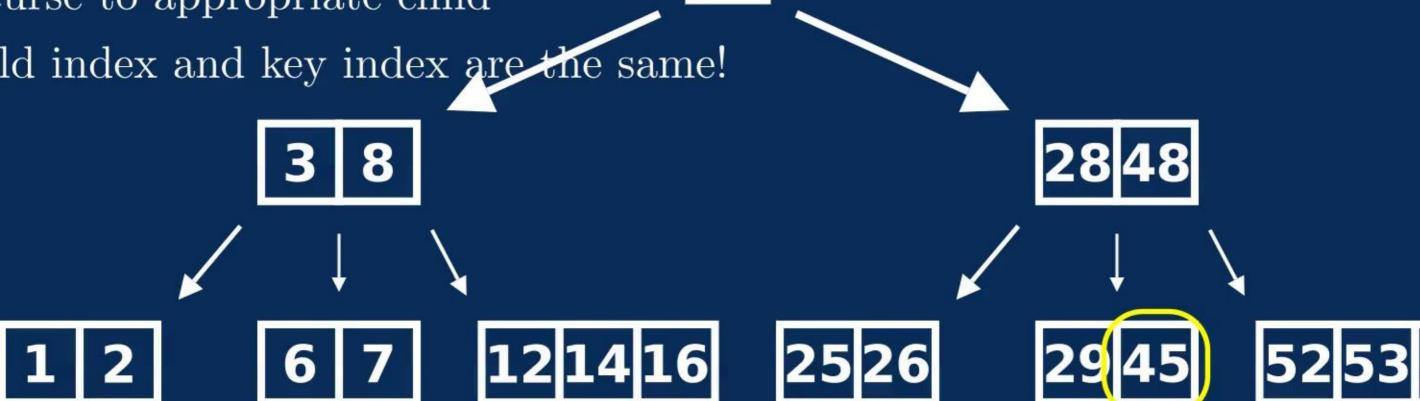
find(16)

- · Array find for first \geq key.
- Recurse to appropriate child
- · Child index and key index are the same!

- \cdot root empty \Rightarrow return
- · leaf \Rightarrow do array find

find(45)

- · Array find for first \geq key.
- Recurse to appropriate child
- · Child index and key index are the same!



Array Insert

B Tree Design

Node insert is simply ordered array insert.

Insert 5, 3, 8, 2, 4

Technically $\mathcal{O}(m)$ but we don't care.

- · m is constant
- · cost of seeking far more expensive

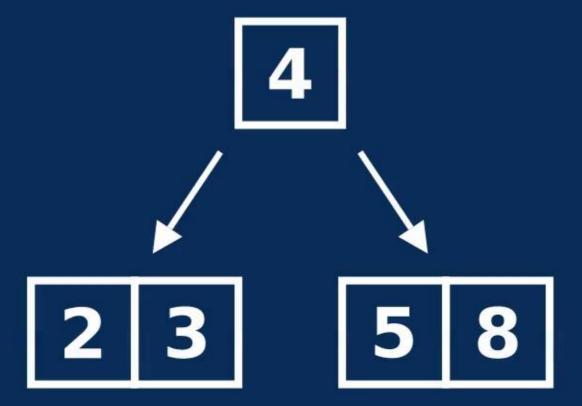
Node full? Split the node and promote the median.

Let's suppose m = 5 and we just inserted 8.

Node full? Split the node and promote the median.

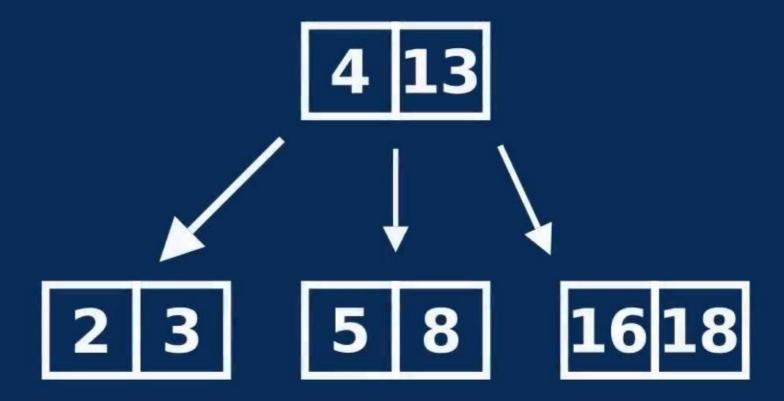
Let's suppose m = 5 and we just inserted 8.

Split size (children) is $\lceil \frac{m}{2} \rceil$



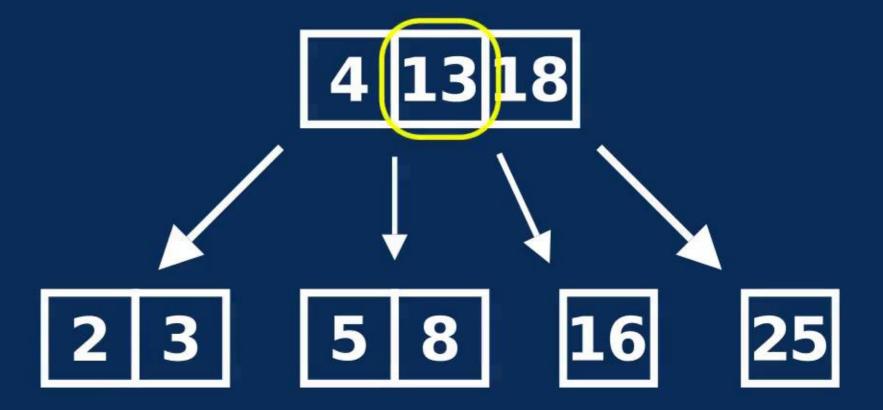
Splitting can happen recursively.

Let m=3. Insert 25.



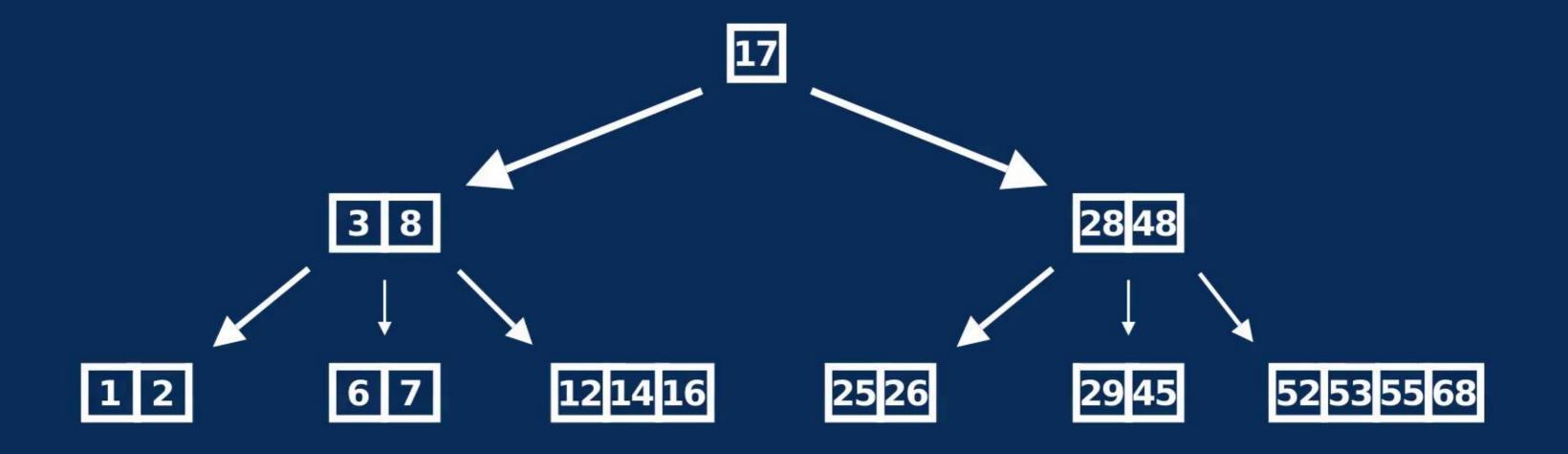
Splitting can happen recursively.

Let m=3. Insert 25.

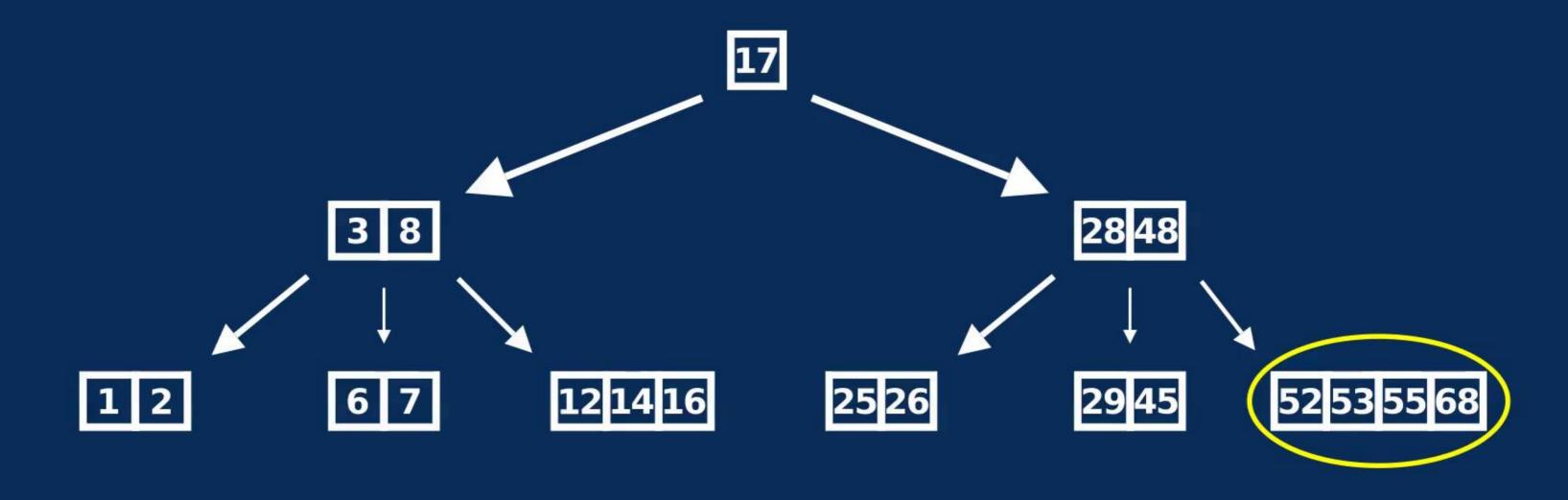


Splitting can happen recursively. Let m=3. Insert 25. | 5 | 8 |

This is a valid B Tree. What is the lower bound for m?



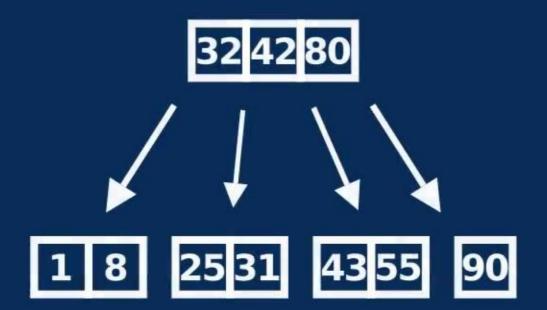
This is a valid B Tree. What is the lower bound for m? 4 keys implies $m \leq 5$



Minimum node size B Tree Analysis

We have a max on keys. How about a min?

Is this tree valid? Let m = 5. Hint: $\lceil \frac{m}{2} \rceil = 3$

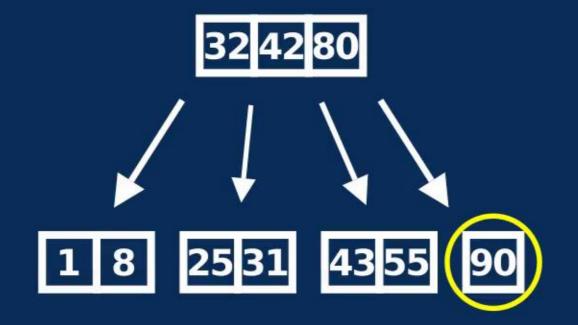


Minimum node size B Tree Analysis

We have a max on keys. How about a min?

Is this tree valid? Let m = 5. Hint: $\lceil \frac{m}{2} \rceil = 3$

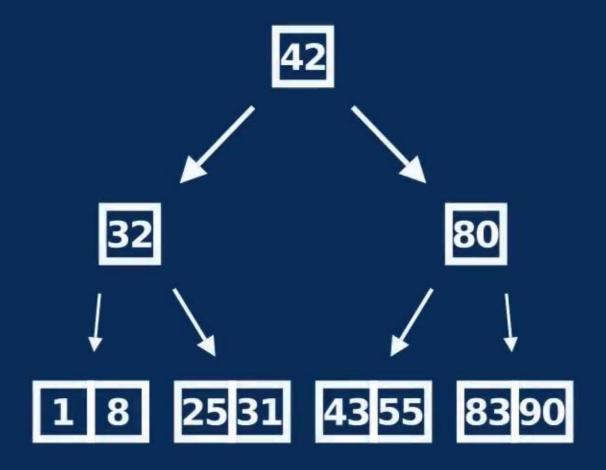
The bottom right leaf has $2 < \lceil \frac{m}{2} \rceil$ children



Minimum node size 2 B Tree Analysis

We have a max on keys. How about a min?

Is this tree valid? Let m = 5. Hint: $\lceil \frac{m}{2} \rceil = 3$

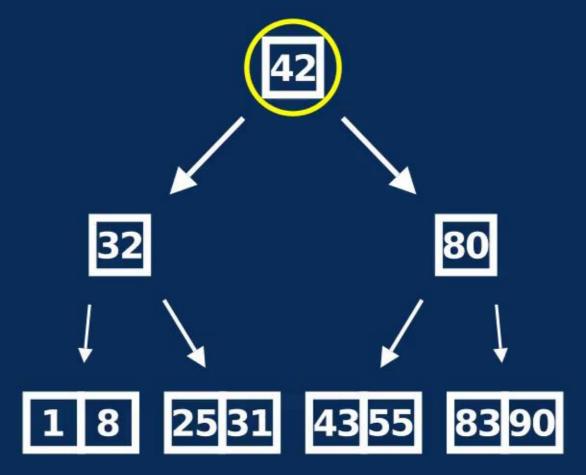


Minimum node size 2 B Tree Analysis

We have a max on keys. How about a min?

Is this tree valid? Let m = 5. Hint: $\lceil \frac{m}{2} \rceil = 3$

The 32-42-80 node should not have been split.



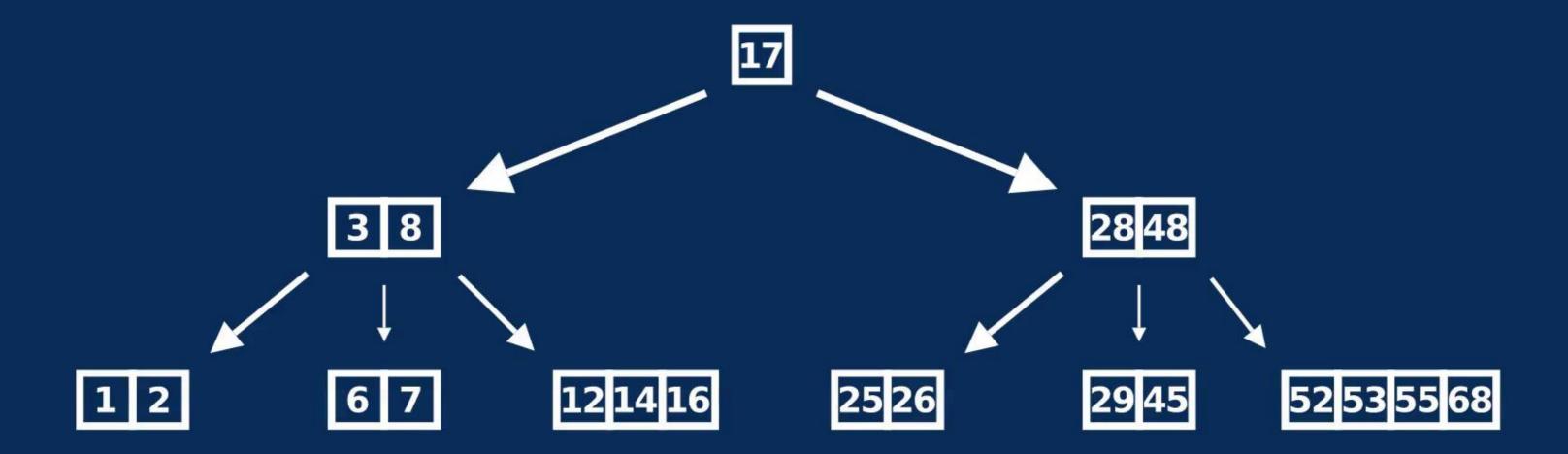
- A B Tree of order m is an m-ary tree
- · All keys are ordered
- A node contains no more than m-1 keys
- · Internal nodes have exactly one more child than keys
- · All leaves are on the same level

Bounds on node sizes:

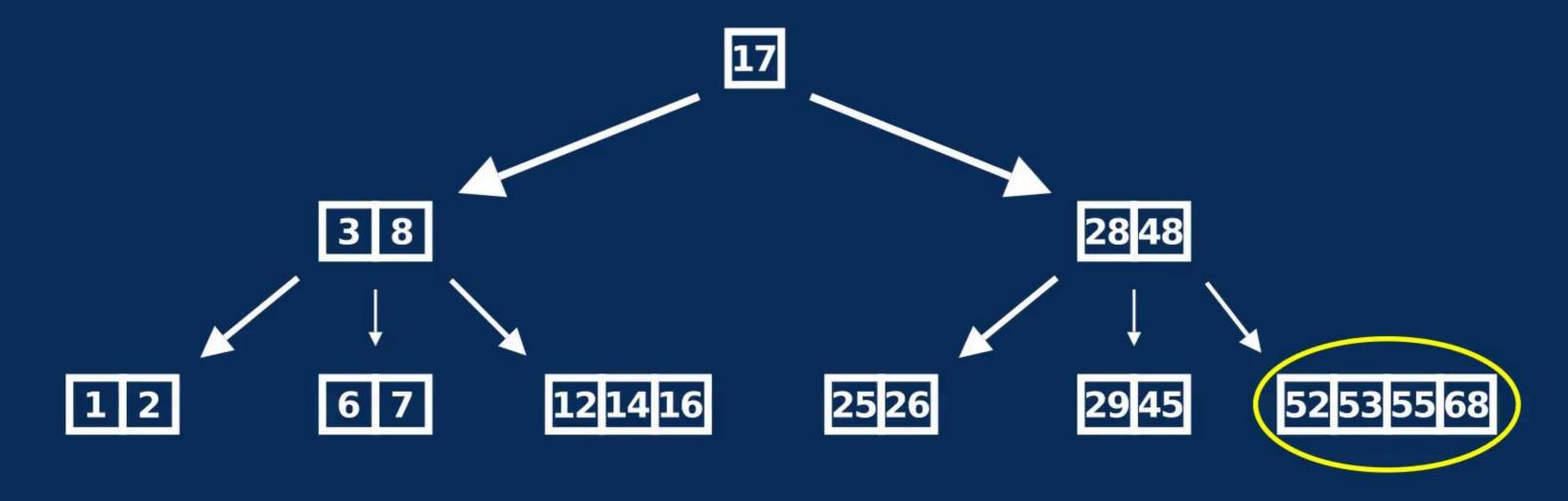
- A B Tree of order m is an m-ary tree
- · All keys are ordered
- · A node contains no more than m-1 keys
- · Internal nodes have exactly one more child than keys
- · All leaves are on the same level
- Bounds on node sizes:
- · Root nodes can be a leaf or have [2, m] children.

- A B Tree of order m is an m-ary tree
- · All keys are ordered
- · A node contains no more than m-1 keys
- · Internal nodes have exactly one more child than keys
- · All leaves are on the same level
- Bounds on node sizes:
- · Root nodes can be a leaf or have [2, m] children.
- · Non-root internal nodes have $\lceil \lfloor \frac{m}{2} \rceil, m \rceil$ children.

This is a valid B Tree. What is the precise value for m?

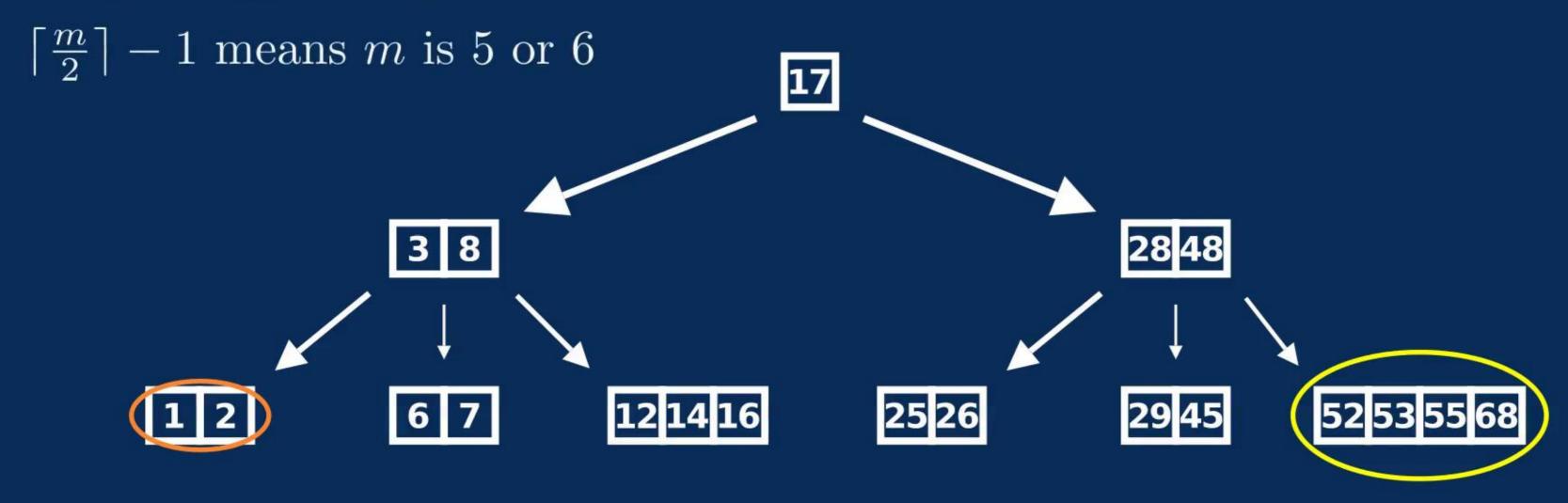


This is a valid B Tree. What is the precise value for m? 4 keys implies $m \leq 5$



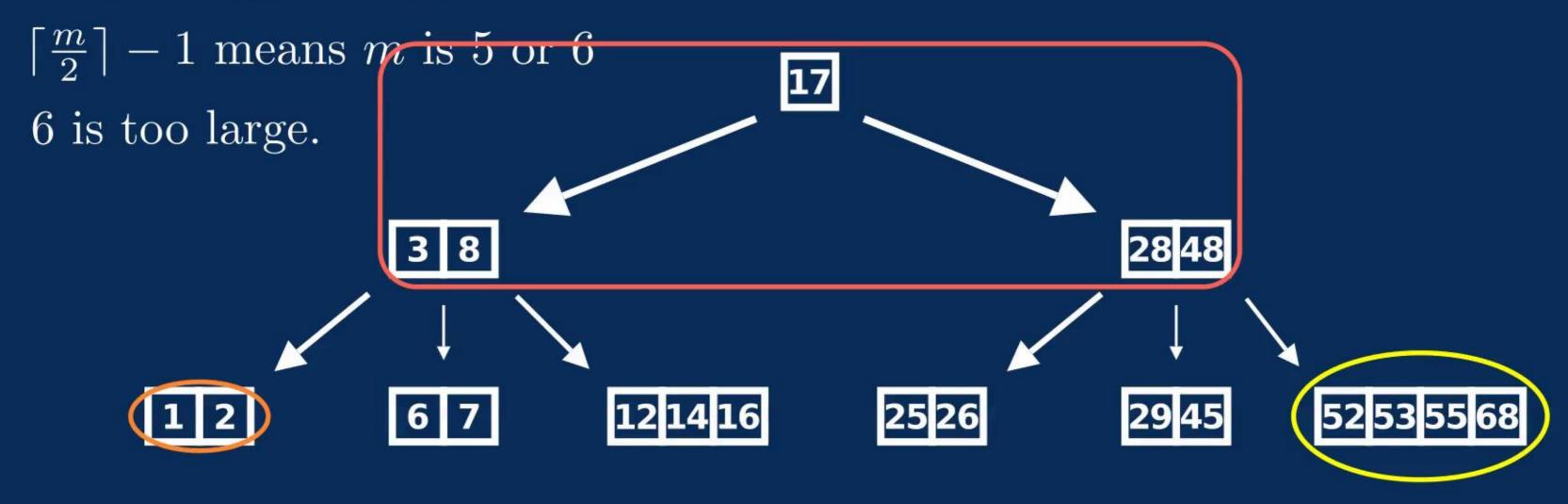
This is a valid B Tree. What is the precise value for m?

4 keys implies $m \leq 5$



This is a valid B Tree. What is the precise value for m?

4 keys implies $m \leq 5$



B Tree height will determine runtime

Claim: B Tree limits height to $\mathcal{O}(log_m(n))$

Proof: find relationship between keys (n) and height (h)

Count how many nodes are on each level

Add minimum number of keys per node to get n

This will tell us the largest possible height h

Let
$$t = \lceil \frac{m}{2} \rceil$$

Let
$$t = \lceil \frac{m}{2} \rceil$$

Think about number of nodes for root, levels 1,2,3,h

· Root: 1

Let
$$t = \lceil \frac{m}{2} \rceil$$

- · Root: 1
- · Level 1: 2

Let
$$t = \lceil \frac{m}{2} \rceil$$

- · Root: 1
- · Level 1: 2
- · Level 2: 2t

Let
$$t = \lceil \frac{m}{2} \rceil$$

- · Root: 1
- · Level 1: 2
- · Level 2: 2t
- Level 3: $2t^2$

Let
$$t = \lceil \frac{m}{2} \rceil$$

- · Root: 1
- · Level 1: 2
- · Level 2: 2t
- Level 3: $2t^2$
- Level h: $2t^{h-1}$

Minimum total nodes is
$$1 + 2\sum_{k=0}^{n-1} t^k$$

Useful identity:
$$\sum_{i=0}^{n-1} x^i = \frac{x^n - 1}{x - 1}$$

So
$$1 + 2\sum_{k=0}^{h-1} t^k = 1 + 2\frac{t^h - 1}{t - 1}$$

Min total nodes is
$$1 + 2\sum_{k=0}^{h-1} t^k = 1 + 2\frac{t^h - 1}{t - 1}$$

Minimum number of keys:

Root: 1 key / 1 node

Internal: $\lceil \frac{m}{2} \rceil - 1 = t - 1$

Leaf: $\lceil \frac{m}{2} \rceil - 1 = t - 1$

So we can multiply the fraction by t-1!

Important inequality about n:

$$n \geq 2t^h - 1$$

Important inequality about n:

$$n \geq 2t^h - 1$$

Add one to both sides: $n+1 \ge 2t^h$

Important inequality about n:

$$n \ge 2t^h - 1$$

Add one to both sides: $n+1 \ge 2t^h$

Take logs: $log_m(n+1) \ge log_m(2\lceil \frac{m}{2} \rceil^h)$

Important inequality about n:

$$n \geq 2t^h - 1$$

Add one to both sides: $n+1 \ge 2t^h$

Take logs: $log_m(n+1) \ge log_m(2\lceil \frac{m}{2}\rceil^h)$

Ignore ceiling and constants: $log_m(m^h) = h$

Important inequality about n:

$$n \geq 2t^h - 1$$

Add one to both sides: $n+1 \ge 2t^h$

Take logs: $log_m(n+1) \ge log_m(2\lceil \frac{m}{2} \rceil^h)$

Ignore ceiling and constants: $log_m(m^h) = h$

Finally: we have $h = \mathcal{O}(log_m n)$

$$h = \mathcal{O}(log_m n)$$

What are min and max for m = 101 and h = 4?

$$h = \mathcal{O}(log_m n)$$

What are min and max for m = 101 and h = 4?

• Min is $2 \times 51^4 - 1 = 13,530,401$

$$h = \mathcal{O}(log_m n)$$

What are min and max for m = 101 and h = 4?

- Min is $2 \times 51^4 1 = 13,530,401$
- Max is $100 + 101^1 \times 100 + 101^2 \times 100 + \cdots$

$$h = \mathcal{O}(log_m n)$$

What are min and max for m = 101 and h = 4?

- Min is $2 \times 51^4 1 = 13,530,401$
- Max is $100 + 101^1 \times 100 + 101^2 \times 100 + \cdots$
- $\cdot = 100 \sum_{i=0}^{4} 101^{i}$
- $\cdot = 100 \frac{101^5 1}{101 1} = 10,510,100,500$