B Tree Analysis

CS 225 - Fall 2025

Mattox Beckman / Based on slides from Brad Solomon

LSR5 ()bj ectives Introduction

Objectives
- Explain the importance of m in the B Tree
- Explain how delete preserves B Tree properties

- Analyze the performance of a B Tree

CS 225 Definitions B Tree Design

A B Tree of order m is an m-ary tree

- All keys are ordered

- A node contains no more than m — 1 keys

. Internal nodes have exactly one more child than keys
.- Intuition: how many keys / childern in a BST?

- All leaves are on the same level

CS 225 Find (Review) B Tree Design

Base Case
. ToOot empty = return

. leat = do array find

Recursive Case
- Array find for first > key:.

- Recurse to appropriate child

- Child index and key index are the same!

CS 225 Find (Review) B Tree Design

Base Case
. root empty = return

: leat = do array find ﬁﬂd(6)

Recursive Case

- Array find for first > key. .
N 17

- Recurse to appropriate child

- Child index and key index Wme! \
N\ N\

| |
[1]2]

CS 225 Find (Review) B Tree Design

Base Case
.- Toot empty = return

: leat = do array find ﬁﬂd(6)

Recursive Case

. Array find for first > key. .
B 17

- Recurse to appropriate child

- Child index and key index Wme! \

/ 1\ /1N
[1]2]

|

CS 225 Find (Review) B Tree Design

Base Case
. root empty = return

: leaf = do array find flIld_(]- 6)

Recursive Case

- Array find for first > key. .
N 17

- Recurse to appropriate child

- Child index and key index Wme! \
Y

L\ 4 \
[1]2]

|

CS 225 Find (Review) B Tree Design

Base Case
. root empty = return

: leaf = do array find flIld_ (4:5)

Recursive Case

- Array find for first > key. .
N 17

- Recurse to appropriate child

- Child index and key index Wme! \
/N /N

[1]2]

5225 Array Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4
Technically O(m) but we don’t care.

- m 18 constant
. cost of seeking far more expensive

O 1 2 3 4

CS 225 Sp]itting B Tree Design

Node full? Split the node and promote the median.

Let’s suppose m = 5 and we just inserted 8.

CS 225 Sp]itting B Tree Design

Node full? Split the node and promote the median.

Let’s suppose m = 5 and we just inserted 8.
Split size (children) is | %]

4]
/N
HE

CS 225 Sp]itting B Tree Design

Splitting can happen recursively.
Let m = 3. Insert 25.

CS 225 Sp]itting B Tree Design

Splitting can happen recursively.
Let m = 3. Insert 25.

CS 225 Sp]itting B Tree Design

Splitting can happen recursively. @
Let m = 3. Insert 25. l l

€S 225 Lower Bound for m B Tree Analysis
This 1s a valid B Tree. What i1s the lower bound tor m?

/ \

/ \ /1\
iLz] -

€S 225 Lower Bound for m B Tree Analysis

This 1s a valid B Tree. What i1s the lower bound for m?
4 keys implies m < 5

/

\
/ \. it 1
=] -

N\
FEEET

CS 225 Minimum node size B Tree Analysis

We have a max on keys. How about a min?
Is this tree valid? Let m = 5. Hint: [5]| =3

B2a2Jed]

/1A

[11e] sy [e3s3] foo]

CS 225 Minimum node size B Tree Analysis

We have a max on keys. How about a min?
Is this tree valid? Let m = 5. Hint: [5]| =3

The bottom right leaf has 2 < [%] children

B2Ja2Jed]

/1A

polETEE(z)

CS 225 Minimum node size 2 B Tree Analysis

We have a max on keys. How about a min?
Is this tree valid? Let m = 5. Hint: [5]| =3

CS 225 Minimum node size 2 B Tree Analysis

We have a max on keys. How about a min?
Is this tree valid? Let m = 5. Hint: [5]| =3

The 32-42-80 node should not have been split.
22 el

I\ / l

CH 225 Properties B Tree Analysis

A B Tree of order m is an m-ary tree

- All keys are ordered

- A node contains no more than m — 1 keys

. Internal nodes have exactly one more child than keys

- All leaves are on the same level
Bounds on node sizes:

CH 225 Properties B Tree Analysis

A B Tree of order m is an m-ary tree

- All keys are ordered

- A node contains no more than m — 1 keys

- Internal nodes have exactly one more child than keys

- All leaves are on the same level
Bounds on node sizes:

- Root nodes can be a leaf or have |2, m| children.

CH 225 Properties B Tree Analysis

A B Tree of order m is an m-ary tree

- All keys are ordered

- A node contains no more than m — 1 keys

- Internal nodes have exactly one more child than keys

- All leaves are on the same level
Bounds on node sizes:

- Root nodes can be a leaf or have |2, m| children.

- Non-root internal nodes have || % |, m| children.

€S 225 Lower Bound for m B Tree Analysis

This is a valid B Tree. What is the precise value for m?

€S 225 Lower Bound for m B Tree Analysis

This is a valid B Tree. What is the precise value for m?

4 keys implies m < 5

€S 225 Lower Bound for m B Tree Analysis

This is a valid B Tree. What is the precise value for m?
4 keys implies m < 5

% | — 1 means m is 5 or 6

€S 225 Lower Bound for m B Tree Analysis

This is a valid B Tree. What is the precise value for m?

4 keys implies m < 5

2] — 1 means nris 5 or 6

6 is too large.

(S 225 To Prove B Tree Analysis

B Tree height will determine runtime
Claim: B Tree limits height to O(log,,(n))

Proof: find relationship between keys (n) and height (h)

25225 Strategy B Tree Analysis

Count how many nodes are on each level

Add minimum number of keys per node to get n
This will tell us the largest possible height h

CS 225 Minimum Nodes per Levéllree Analysis

Let t = [Z}]

Think about number of nodes for root, levels 1,2.3.h

CS 225 Minimum Nodes per Levéllree Analysis

Let t = | %]

Think about number of nodes for root, levels 1,2,3,h
- Root: 1

CS 225 Minimum Nodes per Levéllree Analysis

Let t = | %]

Think about number of nodes for root, levels 1,2,3,h

- Root: 1
- Level 1; 2

CS 225 Minimum Nodes per Levéllree Analysis

Let t = | %]

Think about number of nodes for root, levels 1,2,3,h

- Root: 1
- Level 1; 2
- Level 2: 2t

CS 225 Minimum Nodes per Levéllree Analysis

Let t = | %]

Think about number of nodes for root, levels 1,2,3,h

- Root: 1
- Level 1; 2
- Level 2: 2t

- Level 3: 2t2

CS 225 Minimum Nodes per Levéllree Analysis

Let t = | %]

Think about number of nodes for root, levels 1,2,3,h

- Root: 1
- Level 1; 2
- Level 2: 2t

- Level 3: 2t2
- Level h: 2t"—1

CS 225 Min total Nodes B Tree Analysis

h—1

Minimum total nodes is 1 + 2 Z 1
k=0
T — 1

r — 1

n—1
Useful identity: Z T =
i=0

h—1

So 1+22tk:1+2
k=0

AL |
|

B9 25 Min total keys B Tree Analysis

h—1

Min total nodes is 1 + 2 Ztk =1+ 2
k=0
Minimum number of keys:

Root: 1 key / 1 node

Internal: |5 | —-1=1¢—1

Leaf: || —-1=1-1

So we can multiply the fraction by ¢ — 1!

A |
|

€S 225 Min total keys B Tree Analysis

Smallest number of keys is 2t — 1, where t = S

Important inequality about n:

. n > 2t — 1

B9 25 Min total keys B Tree Analysis

Smallest number of keys is 2t" — 1, where ¢t = [2]
Important inequality about n:

- n > 2th — 1

Add one to both sides: n + 1 > 2t"

B9 25 Min total keys B Tree Analysis

Smallest number of keys is 2t" — 1, where ¢t = [2]
Important inequality about n:

- n > 2t — 1

Add one to both sides: n + 1 > 2t"

Take logs: l0gm(n+ 1) > logy, (2] 2]")

B9 25 Min total keys B Tree Analysis

Smallest number of keys is 2t" — 1, where ¢t = [2]
Important inequality about n:

- n > 2t — 1

Add one to both sides: n + 1 > 2t"

Take logs: l0gm(n+ 1) > log, (2] 2]")

Ignore ceiling and constants: log,,(m") = h

B9 25 Min total keys B Tree Analysis

Smallest number of keys is 2t" — 1, where ¢t = [2]
Important inequality about n:

- n > 2th — 1

Add one to both sides: n + 1 > 2t"

Take logs: l0gm(n+ 1) > log, (2] 2]")

[gnore ceiling and constants: log,,(m") = h

Finally: we have h = O(log,,n)

CS 225 Conclusion B Tree Analysis

Smallest number of keys is 2t" — 1, where t = [%W
= CHlogn]

What are min and max for m = 101 and h = 47

CS 225 Conclusion B Tree Analysis

Smallest number of keys is 2t" — 1, where ¢t = [Z]
h = O(logm,n)

What are min and max for m = 101 and h = 47

- Min is 2 x 51* — 1 = 13, 530, 401

CS 225 Conclusion B Tree Analysis

Smallest number of keys is 2t" — 1, where ¢t = [Z]
h = O(logm,n)

What are min and max for m = 101 and h = 47

- Min is 2 x 51* — 1 = 13, 530, 401

- Max is 100 + 101% x 100 + 1012 x 100 + - - -

CS 225 Conclusion B Tree Analysis

Smallest number of keys is 2t — 1, where t = B
h = O(logm,n)

What are min and max for m = 101 and h = 47

- Min is 2 x 51* — 1 = 13, 530, 401

- Max is 100 + 101" x 100 + 1012 x 100 +- - -
- =100, 101

- =1001%=L = 10,510, 100, 500

