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LSR5 ()bj ectives Introduction

Objectives
- Explain how engineering reality can affect trees

- Explain how B Tree find and insert work

Announcements
- There were a LOT of cases for MP Lists

- Informal Early Feedback in the Discord
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CS 225 Balanced BST Summary Introduction

Pros: Cons:
O(log n) insert O(log n) is actually slow
Optimal 1D range queries Needs a LOT of memory



£5 225 Engineering VS Theory Introduction

Big-O assumes all operations take the same time
This is not always true!

Can you think of examples?
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Can we always fit our data in main memory?
Where else can we keep our data?
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CS 225 Hardware Limitations Introduction

Can we always fit our data in main memory?
- No! Just check your cell phone camera....

Where else can we keep our data?
- Hard Drives, the Cloud, Mass Storage....

Does this match our assumption that lookups are O(n)?
- Nope. See https://gist.github.com/hellerbarde /2843375
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CS 225 B Tree Design Motivations Introduction

Keep the number of seeks low

- Make a tree that 1s wide and short

When possible store data locally
. Store more than one key per node

Make sure data is relevant
- Make sure the tree i1s ordered



CS 225 Definitions B Tree Design

A B Tree of order m is an m-ary tree
Nodes are ordered, have up to m — 1 keys and keys + 1 children

All leaves are on the same level

Y 0
4 \ 4 \

| |
[1]2]



S 225 ADT B Tree Design

- Constructor
- Insert

- Find

- Delete



ADT B Tree Design

B Tree Node of Order m

1 struct BTreeNode {

CS 2725
- Constructor
- Insert
- Find (000
- Delete >
3
4 }

elements |-3|5 [20(44

std::vector<DataPair> elements:
std: :vector<BTreeNode*> children:

children |-[-]-]-[-



CS 225 Find

Base Case
. TOoOt empty = return

. leat = do array find

Recursive Case

- Array find for first > match.

- Recurse to appropriate child

B Tree Design
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Base Case
- Toot empty = return

: leat = do array find ﬁnd( ]. 6)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
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CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leat = do array find ﬁnd (4:5)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
4 \ ./ \

[1]2]



CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leaf = do array find ﬁnd (4:5)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
4 \ ./

\
[1]2]
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CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4
What is the time complexity of sorted array insertion?

It’s O(n). Is this a problem?

No. m 1s constant, and memory operations are fast.
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What do we do it the node gets full?

Split the node and promote the median.

Let’s suppose m = 5.

0

4]
0 1 o ~ 0 1

EEl



CS 225 Sp]itting B Tree Design

Splitting can happen recursively.

Let m = 3. Insert 25.
Can you predict what happens?

/ L\
HEIRBCRTT



CS 225 Sp]itting B Tree Design

Splitting can happen recursively. IEI

Let m = 3. Insert 25. l l
Can you predict what happens?



CS 225 That's All! B Tree Design

Next time: B Tree delete and analysis



