B-Irees
CS 225 - Fall 2025

Mattox Beckman / Based on slides from Brad Solomon

LSR5 ()bj ectives Introduction

Objectives
- Explain how engineering reality can affect trees

- Explain how B Tree find and insert work

Announcements
- There were a LOT of cases for MP Lists

- Informal Early Feedback in the Discord

CS 225 Balanced BST Summary Introduction

Pros:

CS 225 Balanced BST Summary Introduction

Pros:
O(log n) insert
Optimal 1D range queries

CS 225 Balanced BST Summary Introduction

Pros: Cons:
O(log n) insert
Optimal 1D range queries

CS 225 Balanced BST Summary Introduction

Pros: Cons:
O(log n) insert O(log n) is actually slow
Optimal 1D range queries Needs a LOT of memory

£5 225 Engineering VS Theory Introduction

Big-O assumes all operations take the same time
This is not always true!

Can you think of examples?

C5 225 Hardware Limitations Introduction

Can we always fit our data in main memory?
Where else can we keep our data?

Does this match our assumption that lookups are O(n)?

CS 225 Hardware Limitations Introduction

Can we always fit our data in main memory?
- No! Just check your cell phone camera....

Where else can we keep our data?

Does this match our assumption that lookups are O(n)?

CS 225 Hardware Limitations Introduction

Can we always fit our data in main memory?
- No! Just check your cell phone camera....
Where else can we keep our data?

- Hard Drives, the Cloud, Mass Storage....

Does this match our assumption that lookups are O(n)?

CS 225 Hardware Limitations Introduction

Can we always fit our data in main memory?
- No! Just check your cell phone camera....

Where else can we keep our data?
- Hard Drives, the Cloud, Mass Storage....

Does this match our assumption that lookups are O(n)?
- Nope. See https://gist.github.com/hellerbarde /2843375

CS 225 B Tree Design Motivations Introduction

Keep the number of seeks low

When possible store data locally

Make sure data 1s relevant

CS 225 B Tree Design Motivations Introduction

Keep the number of seeks low

- Make a tree that 1s wide and short

When possible store data locally

Make sure data is relevant

CS 225 B Tree Design Motivations Introduction

Keep the number of seeks low

- Make a tree that 1s wide and short

When possible store data locally
. Store more than one key per node

Make sure data is relevant

CS 225 B Tree Design Motivations Introduction

Keep the number of seeks low

- Make a tree that 1s wide and short

When possible store data locally
. Store more than one key per node

Make sure data is relevant
- Make sure the tree i1s ordered

CS 225 Definitions B Tree Design

A B Tree of order m is an m-ary tree
Nodes are ordered, have up to m — 1 keys and keys + 1 children

All leaves are on the same level

Y 0
4 \ 4 \

| |
[1]2]

S 225 ADT B Tree Design

- Constructor
- Insert

- Find

- Delete

ADT B Tree Design

B Tree Node of Order m

1 struct BTreeNode {

CS 2725
- Constructor
- Insert
- Find (000
- Delete >
3
4 }

elements |-3|5 [20(44

std::vector<DataPair> elements:
std: :vector<BTreeNode*> children:

children |-[-]-]-[-

CS 225 Find

Base Case
. TOoOt empty = return

. leat = do array find

Recursive Case

- Array find for first > match.

- Recurse to appropriate child

B Tree Design

CS 225 Find B Tree Design

Base Case
- Toot empty = return

- leat = do array find

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
/ \ ./ \

[1]2]

CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leat = do array find ﬁnd(6)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
4 \ ./ \

[1]2]

CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leat = do array find ﬁnd(6)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
/\

Y/
[1]2]

CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leat = do array find ﬁnd(]. 6)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
4 \ ./ \

[1]2]

CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leat = do array find ﬁnd(]. 6)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
Y/ ./ \

[1]2]

CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leat = do array find ﬁnd (4:5)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
4 \ ./ \

[1]2]

CS 225 Find B Tree Design

Base Case
- Toot empty = return

: leaf = do array find ﬁnd (4:5)

Recursive Case
- Array find for first > match.

- Recurse to appropriate child

/ \
4 \ ./

\
[1]2]

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4

What is the time complexity of sorted array insertion?

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4
What is the time complexity of sorted array insertion?

It’s O(n). Is this a problem?

CS 225 Insert B Tree Design

Node insert is simply ordered array insert.
Insert 5, 3, 8, 2, 4

O 1 2 3 4
What is the time complexity of sorted array insertion?

It’s O(n). Is this a problem?

No. m 1s constant, and memory operations are fast.

CS 225 Sp]itting B Tree Design

What do we do it the node gets full?

Split the node and promote the median.

Let’s suppose m = 5.

O 1 2 3 4

CS 225 Sp]itting B Tree Design

What do we do it the node gets full?

Split the node and promote the median.

Let’s suppose m = 5.

0

4]
0 1 o ~ 0 1

EEl

CS 225 Sp]itting B Tree Design

Splitting can happen recursively.

Let m = 3. Insert 25.
Can you predict what happens?

/ L\
HEIRBCRTT

CS 225 Sp]itting B Tree Design

Splitting can happen recursively. IEI

Let m = 3. Insert 25. l l
Can you predict what happens?

CS 225 That's All! B Tree Design

Next time: B Tree delete and analysis

