Data Structures AVL Analysis

CS 225 Brad Solomon October 6, 2025

Learning Objectives

Review AVL trees

Prove that the AVL Tree speeds up all operations

AVL Tree

The AVL tree is a modified binary search tree that is **balanced**

 $\textbf{Height balance:} \ b = height(T_R) - height(T_L)$

AVL Rotations

We can identify which rotation to do using **balance**

AVL Rotations

RightLeft Right Left LeftRight Root Balance: Child Balance:

AVL Tree Rotations All rotations are O(1) All rotations reduce subtree height by one

AVL Tree Rotations

All rotations are O(1)

All rotations reduce subtree height by one

AVL Tree Rotations

All rotations are local (subtrees are not impacted)

AVL Tree Rotations

All rotations preserve BST property

AVL Rotations

Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal: AVL tiers must be better than BSI

AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates when necessary

```
1 struct TreeNode {
2  T key;
3  unsigned height;
4  TreeNode *left;
5  TreeNode *right;
6 };

1  Store height to torn
5  boldene from o(h) to O(i)
```

How does the constraint on balance affect the core functions?

Find

Insert

Remove

insert(6.5)

AVL Insertion

```
1) Insert at propor place
2) Check balance
3) Rotate if necessary
4) Update height
```

```
1 struct TreeNode {
2   T key;
3   unsigned height;
4   TreeNode *left;
5   TreeNode *right;
6 };
```


AVL Insertion

Insert (recursive pseudocode):

- 1. Insert at proper place
- 2. Check for imbalance
- 3. Rotate, if necessary
- 4. Update height

```
1 struct TreeNode {
2   T key;
3   unsigned height;
4   TreeNode *left;
5   TreeNode *right;
6 };
```


AVL Insertion Practice

Having inserted 14, where do we rotate?

AVL Insertion Practice

_insert(14)

AVL Insertion

Given an AVL is balanced, insert can insert at most one imbalance

AVL Insertion Logic

Insert may increase height by at most one

A rotation *always* reduces the height of the subtree by **one**

A single* rotation restores balance and corrects height!

What is the Big O of performing a single rotation?

remove(10)

An AVL remove step can reduce a subtree height by at most:

But a rotation *reduces* the height of a subtree by one!

We might have to perform a rotation at every level of the tree!

What is the Big O of performing a single rotation? \bigcirc ()

What is the Big O of remove? () (h)

up to h cotations 4 (1) kh

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: $\frac{O(h)}{I}$

Insert runs in: O(h)

Remove runs in:

Claim: The height of the AVL tree with n nodes is: () ().

AVL Tree Analysis

Definition of big-O:

$$f(n)$$
 is $O(g(n))$ iff $\exists c, k \text{ s.t.} f(n) \leq cg(n) \ \forall n > k$

...or, with pictures:

AVL Tree Analysis

The height of the tree, f(n), will always be <u>less than</u> $c \times g(n)$ for all values where n > k.

The number of nodes in the tree, $f^{-1}(h)$, will always be greater than $c \times g^{-1}(h)$ for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on **n** given **h**, we can begin by defining a function given **h** which describes the smallest number of nodes in an AVL tree of height **h**:

N(h) = minimum number of nodes in an AVL tree of height h

$$h=-1$$
 $h=0$ $h=2$ $height$ $h=3$ min

Onables 1 node a nodes

 $M(h) = 1 + M(h-1) + N(h-2)$

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$
(Onstant

$$N(h) = 1 + N(h-1) + N(h-2)$$

 $N(h) > N(h-1) + N(h-2)$
 $N(h) > 2N(h-2)$
 $N(h) > 2N(h-2)$

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2) \qquad \qquad \nearrow^{h/2}$$

1) Know characteristic equation? Get answer immediately!

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

2) Unroll:
$$N(h) > 2N(h-2) = 2(2(N(h-4))) = 2^k(N(h-2k))$$

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

2) Unroll:
$$N(h) > 2N(h-2) = 2(2(N(h-4))) = 2^k(N(h-2k))$$

When
$$h - 2k = 0$$
, $k = h/2$. Thus $N(h) > 2^{h/2}$

$$\mathcal{N}(h) = \mathcal{N}(h-1)$$

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

3) Intuit approximate shape from recursion

$$N(h) = 1 + N(h-1) + N(h-2)$$

$$N(h) > N(h-1) + N(h-2)$$

$$N(h) > 2N(h-2)$$

By whatever strategy you like: $N(h) > 2^{h/2}$

State a Theorem

Theorem: An AVL tree of height h has at least $N(h) > 2^{h/2}$.

Proof by Induction:

I. Consider an AVL tree and let **h** denote its height.

II. Base Case:
$$h = 1$$

An AVL tree of height $\frac{1}{2}$ has at least $\frac{(44)}{2}$ nodes.

III. Base Case: $h = \lambda$

 $\lambda = \lambda$

An AVL tree of height $\frac{\lambda}{2}$ has at least $\frac{\lambda}{2}$ nodes.

IV. Induction Step: Assume for all heights $i < h, N(i) \ge 2^{i/2}$.

Prove that $N(h) \ge 2^{h/2}$

IV. Induction Step: Assume for all heights $i < h, N(i) \ge 0$

Prove that
$$N(h) \ge 2^{h/2}$$

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

$$N(h) > 2N(h-2)$$

$$N(h) > 2N(h-2)$$
 $N(h) > 2*2^{(h-2)/2}$
 $N(h) > 2*2^{(h-2)/2}$

$$N(h) > 2^{\frac{11}{2}} 2^{h/2-1}$$

$$N(h) > 2^{h/2}$$

V. Using a proof by induction, we have shown that:

V. Using a proof by induction, we have shown that:

 $N(h) \ge 2^{h/2}$, where N(h) is the min # of nodes of a tree of height h

But we need to know n, the # of nodes in any tree of height h

$$109_2 \land 2 609_2$$
 $109_2 \land 2 609_2$
 $109_3 \land 2 609_2$
 $109_3 \land 2 609_2$

V. Using a proof by induction, we have shown that:

$$N(h) \ge 2^{h/2}$$
, where $N(h)$ is the min # of nodes of a tree of height h

But we need to know n, the # of nodes in any tree of height h

$$n \ge N(h)$$

$$log(n) \ge \frac{h}{2}$$

$$h \le 2 \log(n)$$

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

```
N(h) := Minimum # of nodes in an AVL tree of height h

N(h) = 1 + N(h-1) + N(h-2)

> 1 + 2(h-1)/2 + 2(h-2)/2

> 2 \times 2(h-2)/2 = 2(h-2)/2+1 = 2h/2
```

Theorem #1:

Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

```
# of nodes (n) \geq N(h) > 2^{h/2}

n > 2^{h/2}

lg(n) > h/2

2 \times lg(n) > h

h < 2 \times lg(n) , for h \geq 1
```

Proved: The maximum number of nodes in an AVL tree of height h is less than 2 × lg(n).

Pros: Cons:

Every Data Structure So Far

	Unsorted Array	Sorted Array	Unsorted Linked List	Sorted Linked List	Binary Tree	BST	AVL
Find							(log n)
Insert	1*] (at Leat)				0(kg 1)
Remove			\wedge				0(109~)
Traverse							

Cache Locality / Memory Management

From an engineering perspective, linked lists were much worse than array lists due to memory locality!

Why are trees any different?

Can we make a tree thats good at 'tree things' AND memory local?

AVL Trees

- Max height: 1.44 * lg(n)
- Rotations:

AVL Trees

- Max height: 1.44 * lg(n)
- Rotations:

```
Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove
```

Red-Black Trees

- Max height: 2 * lg(n)
- Constant number of rotations on insert (max 2), remove (max 3).

Pros:

- Running Time:

- Improvement Over:

- Great for specific applications:

Cons:

- Running Time:

- In-memory Requirement: