
Department of Computer Science

Data Structures
AVL Analysis

October 6, 2025 CS 225
Brad Solomon

Learning Objectives

Prove that the AVL Tree speeds up all operations

Review AVL trees

AVL Tree
The AVL tree is a modified binary search tree that is balanced

84

51 89

A B C D

13

10 25

38

51

84

89

A

B

C D

Height balance: b = height(TR) − height(TL)

AVL Rotations
We can identify which rotation to do using balance

13

10 25

38

51

12

13

10 25

38

51

15

AVL Rotations
Left Right LeftRight RightLeft

Root Balance:

Child Balance:

2

1

-2

-1

-2

1

2

-1

AVL Tree Rotations
A

B

C

A

B

C

All rotations are O(1)

All rotations reduce
subtree height by one

AVL Tree Rotations
A

B

C

A

B

C

All rotations are O(1)

All rotations reduce
subtree height by one

B

CA

C

A

B
B

CA

AVL Tree Rotations

5

6

8

7

7.5

All rotations are local (subtrees are not impacted)

5

3 6

4

8

10

9 12

11
1 7

2 7.5

AVL Tree Rotations

B

C

D

E

F

G H

A

All rotations preserve BST property

AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal:

AVL vs BST ADT
The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?

Find

Insert

Remove

struct TreeNode {
 T key;
 unsigned height;
 TreeNode *left;
 TreeNode *right;
};

1
2
3
4
5
6

AVL Find

5

3 6

4

2

8

10

9 12

111 7

_find(7)

struct TreeNode {
 T key;
 unsigned height;
 TreeNode *left;
 TreeNode *right;
};

1
2
3
4
5
6

AVL Insertion _insert(6.5)

5

3 6

4

8

10

9 12

111 7

2

struct TreeNode {
 T key;
 unsigned height;
 TreeNode *left;
 TreeNode *right;
};

1
2
3
4
5
6

5

3 6

4

8

10

9 12

111 7

2

AVL Insertion _insert(6.5)

6.5

Insert (recursive pseudocode):
1. Insert at proper place

2. Check for imbalance

3. Rotate, if necessary

4. Update height

AVL Insertion Practice

6

4 12

13

8

15

7

1

30

_insert(14)

14

A

B

C

D

E

Having inserted 14, where do we rotate?

AVL Insertion Practice

6

4 12

13

8

15

14

7

1

30

6

4 13

12

8

15

14

7

1

30

_insert(14)

L@12

AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

5

3 6

4

2

8

10

9 12

111 7

AVL Insertion Logic
Insert may increase height by at most one

A single* rotation restores balance and corrects height!

A rotation always reduces the height of the subtree by one

What is the Big O of performing a single rotation?

What is the Big O of insert?

AVL Remove

5

3 6

4

2

8

10

9 12

111 7

_remove(10)

AVL Remove
_remove(10)

5

3 6

4

2

8

9

12

111 7

AVL Remove
_remove(10)

5

3 6

4

2

8

9

12

111 7 11

12

9

R@12

L@9

11

129

AVL Remove
_remove(10)

5

3 6

4

2

8

11

9 12

1 7

AVL Remove
_remove(10)

5

3 6

4

2

8

11

9 12

1 7
R@8

5

3 8

11641

3

1 4

2

5

8

6 11

7 129

5

3 6

4

2

8

10

9 12

111 7

_remove(10)AVL Remove
Remove (pseudo code):
1: Remove at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

AVL Remove
Remove can cause an imbalance at every level

5

3 7

4 6

10

15

12 18

191 8

2

_remove(12)

AVL Remove
Remove can cause an imbalance at every level

5

3 7

4 6

10

18

15 19

1 8

2

_remove(12)

AVL Remove
Remove can cause an imbalance at every level

5

3

74

6

10

18

15 19

1

82

_remove(12)

AVL Remove
Remove can cause an imbalance at every level

2
1

4
6

AVL Remove
Remove can cause an imbalance at every level

1 1
4

6

AVL Remove
Remove can cause an imbalance at every level

4
6

2

AVL Remove
Remove can cause an imbalance at every level

3

6

3

AVL Remove
Remove can cause an imbalance at every level

4

6

AVL Remove
Remove can cause an imbalance at every level

5 5

AVL Remove
An AVL remove step can reduce a subtree height by at most:

We might have to perform a rotation at every level of the tree!

But a rotation reduces the height of a subtree by one!

What is the Big O of performing a single rotation?

What is the Big O of remove?

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: __________.

AVL Tree Analysis
Definition of big-O:

…or, with pictures:

n, number of nodes

h,
 h

ei
gh

t
 is iff s.t. f(n) O(g(n)) ∃c, k f(n) ≤ cg(n) ∀n > k

n, number of nodes

h,
 h

ei
gh

t c * g(n)

g(n)

f (n)
k

The height of the tree, f(n), will always be less than
c × g(n) for all values where n > k.

AVL Tree Analysis

AVL Tree Analysis

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n) = “Nodes in tree given height”f −1(h)

Plan of Action

 = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
1) Know characteristic equation? Get answer immediately!

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))
When , . Thus h − 2k = 0 k = h/2 N(h) > 2h/2

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
3) Intuit approximate shape from recursion

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

By whatever strategy you like: N(h) > 2h/2

State a Theorem

An AVL tree of height ____ has at least ____ nodes.

Theorem: An AVL tree of height h has at least .

Proof by Induction:

I. Consider an AVL tree and let h denote its height.

II. Base Case: ______________

N(h) > 2h/2

Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.

III. Base Case: ______________

Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2

Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2

N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

N(h) > 2 * 2(h−2)/2

N(h) > 2 * 2h/2−1

N(h) > 2h/2

Prove a Theorem
V. Using a proof by induction, we have shown that:

Prove a Theorem

, where is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)
V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn

Prove a Theorem

, where is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)

n ≥ N(h)

V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn

log(n) ≥
h
2

h ≤ 2 log(n)

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 N(h) := Minimum # of nodes in an AVL tree of height h
 N(h) = 1 + N(h-1) + N(h-2)

 > 1 + 2(h-1)/2 + 2(h-2)/2

 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2

 Theorem #1:

 Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 # of nodes (n) ≥ N(h) > 2h/2

 n > 2h/2
 lg(n) > h/2

 2 × lg(n) > h

 h < 2 × lg(n) , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 × lg(n).

Summary of Balanced BST
Pros: Cons:

Every Data Structure So Far
Unsorted
Array

Sorted Array Unsorted
Linked List

Sorted
Linked List

Binary Tree BST AVL

Find

Insert

Remove

Traverse

Cache Locality / Memory Management

From an engineering perspective, linked lists were much worse than
array lists due to memory locality!

Why are trees any different?

Can we make a tree thats good at ‘tree things’ AND memory local?

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:
 Zero rotations on find
 One rotation on insert
 O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * lg(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Summary of Balanced BST
Pros:

- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST
Cons:

- Running Time:

- In-memory Requirement:

