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Learning Objectives

Prove that the AVL Tree speeds up all operations

Review AVL trees



AVL Tree
The AVL tree is a modified binary search tree that is balanced
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Height balance: b = height(TR) − height(TL)



AVL Rotations
We can identify which rotation to do using balance
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AVL Rotations
Left Right LeftRight RightLeft

Root Balance:

Child Balance:
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AVL Tree Rotations
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All rotations are O(1)

All rotations reduce 
subtree height by one



AVL Tree Rotations
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AVL Tree Rotations
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All rotations are local (subtrees are not impacted)
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AVL Tree Rotations
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AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal: 



AVL vs BST ADT
The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?

Find

Insert

Remove

struct TreeNode { 
  T key; 
  unsigned height; 
  TreeNode *left; 
  TreeNode *right; 
};
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AVL Find
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struct TreeNode { 
  T key; 
  unsigned height; 
  TreeNode *left; 
  TreeNode *right; 
};

1 
2 
3 
4 
5 
6

AVL Insertion _insert(6.5)
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struct TreeNode { 
  T key; 
  unsigned height; 
  TreeNode *left; 
  TreeNode *right; 
};
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AVL Insertion _insert(6.5)

6.5

Insert (recursive pseudocode):
1. Insert at proper place

2. Check for imbalance

3. Rotate, if necessary

4. Update height



AVL Insertion Practice
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Having inserted 14, where do we rotate?



AVL Insertion Practice
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AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

5

3 6

4

2

8

10

9 12

111 7



AVL Insertion Logic
Insert may increase height by at most one

A single* rotation restores balance and corrects height!

A rotation always reduces the height of the subtree by one

What is the Big O of performing a single rotation?

What is the Big O of insert?



AVL Remove
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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_remove(10)AVL Remove
Remove (pseudo code): 
1: Remove at proper place 
2: Check for imbalance 
3: Rotate, if necessary 
4: Update height



AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level

5

3

74

6

10

18

15 19

1

82

_remove(12)



AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
Remove can cause an imbalance at every level
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AVL Remove
An AVL remove step can reduce a subtree height by at most:

We might have to perform a rotation at every level of the tree!

But a rotation reduces the height of a subtree by one!

What is the Big O of performing a single rotation?

What is the Big O of remove?



AVL Tree Analysis

For an AVL tree of height h: 

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: __________.



AVL Tree Analysis
Definition of big-O: 

…or, with pictures:

n, number of nodes
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n, number of nodes
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The height of the tree, f(n), will always be less than 
c × g(n) for all values where n > k.

AVL Tree Analysis



AVL Tree Analysis

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always 
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n)  = “Nodes in tree given height”f −1(h)



Plan of Action

    = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we 
can begin by defining a function given h which describes the 
smallest number of nodes in an AVL tree of height h:



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
1) Know characteristic equation? Get answer immediately!



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

2) Unroll: N(h) > 2N(h − 2) = 2 (2(N(h − 4)) = 2k (N(h − 2k))
When , . Thus h − 2k = 0 k = h/2 N(h) > 2h/2



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)
3) Intuit approximate shape from recursion



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

By whatever strategy you like: N(h) > 2h/2



State a Theorem

An AVL tree of height ____ has at least ____ nodes.  

Theorem: An AVL tree of height h has at least . 

Proof by Induction: 

I. Consider an AVL tree and let h denote its height. 

II. Base Case: ______________ 

N(h) > 2h/2



Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.  

III. Base Case: ______________



Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2



Prove a Theorem
IV. Induction Step: Assume for all heights , . i < h N(i) ≥ 2i/2

Prove that N(h) ≥ 2h/2

N(h) = 1 + N(h − 1) + N(h − 2)

N(h) > 2N(h − 2)

N(h) > 2 * 2(h−2)/2

N(h) > 2 * 2h/2−1

N(h) > 2h/2



Prove a Theorem
V. Using a proof by induction, we have shown that:



Prove a Theorem

, where  is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)
V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn



Prove a Theorem

, where  is the min # of nodes of a tree of height hN(h) ≥ 2h/2 N(h)

n ≥ N(h)

V. Using a proof by induction, we have shown that:

But we need to know , the # of nodes in any tree of height hn

log(n) ≥
h
2

h ≤ 2 log(n)



AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( lg(n) ): 

    N(h) := Minimum # of nodes in an AVL tree of height h  
    N(h) = 1 + N(h-1) + N(h-2) 

                 > 1 + 2(h-1)/2 + 2(h-2)/2 

                 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2 

   Theorem #1: 

       Every AVL tree of height h has at least 2h/2 nodes.



AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( lg(n) ): 

    # of nodes (n) ≥ N(h) > 2h/2 

    n > 2h/2 
    lg(n) > h/2 

    2 × lg(n) > h 

    h < 2 × lg(n)                 , for h ≥ 1 

Proved: The maximum number of nodes in an AVL tree of 
height h is less than 2 × lg(n).



Summary of Balanced BST
Pros: Cons:



Every Data Structure So Far
Unsorted 
Array

Sorted Array Unsorted 
Linked List

Sorted 
Linked List

Binary Tree BST AVL

Find

Insert

Remove

Traverse



Cache Locality / Memory Management

From an engineering perspective, linked lists were much worse than 
array lists due to memory locality!

Why are trees any different?

Can we make a tree thats good at ‘tree things’ AND memory local?



Summary of Balanced BST
AVL Trees 

- Max height: 1.44 * lg(n) 

- Rotations:



Summary of Balanced BST
AVL Trees 

- Max height: 1.44 * lg(n) 

- Rotations: 
       Zero rotations on find 
       One rotation on insert 
       O(h) == O(lg(n)) rotations on remove 

Red-Black Trees 

- Max height: 2 * lg(n) 

- Constant number of rotations on insert (max 2), remove 
(max 3).



Summary of Balanced BST
Pros: 

- Running Time: 

- Improvement Over: 

- Great for specific applications:



Summary of Balanced BST
Cons: 

- Running Time: 

- In-memory Requirement:


