
Department of Computer Science

Data Structures
Balanced Binary Search Trees

October 1, 2025 CS 225
Harsha Tirumala

Announcements

Exam 2 - 10/01 to 10/03

MP_Stickers survey processed - we will make some changes!

Mp_Lists survey out Today

Exam Regrades - 1. Go over exam with a staff member
 2. If unhappy, fill out regrade request form
 (and mention staff member’s name)

Learning Objectives

BST : Challenges and Solutions

AVL Tree : self-balancing BST

Review kd tree : Nearest Neighbor Search

Briefly review BST in the context of height

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

… But if we dont find exact match, have to find nearest neighbor

Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store “best” possibility as
you trace back

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
On ties, use smallerDimVal to determine which point remains curBest

Nearest Neighbor: k-d tree
Why do we need to explore this subtree?

Nearest Neighbor: k-d tree

BST Analysis – Running Time

Operation
BST Worst Case

find O(h)

insert O(h)

remove O(h)

traverse O(n)

13

10 25

12 37

38

51

40 84

8966

95

BST Analysis

Every operation on a BST depends on the height of the tree.

… how do we relate to , the size of our dataset?O(h) n

Quiz

What is the range of number of nodes in a binary tree of height ?

1. (h, 2h)

2. (h+1, 2h)

3. (h+1, 2h+1)

4. (h+1, 2h+1 - 1)

5. (h+1, 2h - 1)

h

BST Analysis

A BST of nodes has a height between:n

Lower-bound:
h = Ω(log n)

Upper-bound:
h = O(n)

2

1

3

6

4

2

1 3 5 7

4

5

6

7

Height-Balanced Tree

95

7

7

5

9

What tree is better?

Height balance: b = height(TR) − height(TL)

A tree is “balanced” if: |b| <= 1 for every node

b = 0 b = 2

Quiz
Which of the following binary trees are balanced?

A

6

4

2

1 3 5 7

6

4

3

2

1

5 7

B

C

4

3

2

1

6

S

2

2

5

5 7

C

9

Option A: Correcting bad insert order
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 2, 3, 4, 5, 6, 7] BAD

Insert Order: [4, 6, 2, 3, 7, 1, 5] GOOD

Random Order : Mostly GOOD, sometimes BAD - as you’ve seen in lab_BST

AVL-Tree: A self-balancing binary search tree

84

51 89

A B C D

13

10 25

38

51

84

89

A

B

C D

Rather than fixing an insertion order, just correct the tree as needed!

 Adelson Velsky,
Evgenii Landis 1962

BST Rotations (The AVL Tree)

These rotations, when used correctly:

1. Modify the arrangement of nodes while preserving BST property

2. Reduce tree height by one

We can adjust the BST structure by performing rotations.

BST Rotations (The AVL Tree)
To begin, lets find the imbalance in the following tree:

13

10 25

12 37

38

51

40 84

8966

95

13

10 25

38

51

84

89

A

B

C D

Left Rotation

84

51 89

A B C D

51

84

89

A

B

C D

Left Rotation

38

38

1) Create a tmp pointer to root

tmp

84

51 89

A B C D

51

84

89

A

B

C D

Left Rotation

38

38

1) Create a tmp pointer to root

2) Update root to point to mid

X
tmp

84

51 89

A B C D

51

84

89

A

B

C D

Left Rotation

38

38

1) Create a tmp pointer to root

2) Update root to point to mid

tmp

3) tmp->right = root->left

84

51 89

A B C D

51
84

89

A

B

C D

Left Rotation

38

38

1) Create a tmp pointer to root

2) Update root to point to mid

tmp

3) tmp->right = root->left

4) root->left = tmp

Right Rotation

13

10 25

12 37

38

51

Right Rotation

13

10 25

12 37

38

51

10

12 25

37

13

38

51

Coding AVL Rotations
Two ways of visualizing:

1) Think of an arrow ‘rotating’ around the center

51

84

89

A

B

C D2) Recognize that there’s a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft?

Replace current (root) node with it’s right child.

Set the right child’s left child to be the current node’s right

Make the current node the right child’s left child

AVL Rotation Practice

13

10 25

37

38

51

AVL Rotation Practice

13

10 25

37

38

51 10

25

37

13

38

51

Somethings not quite right…

LeftRight Rotation

13

10 25

37

38

51

LeftRight Rotation

13

10 25

37

38

51

25

13 37

38

51

10

Left @13

13

10

25

38

37 51

Right @38

RightLeft Rotation

8

10

15

11

12

18

RightLeft Rotation

8

10

15

11

12

18

8

10

11

12

15

18

Right @15

8

10

11

12

15

18

Left @10

AVL Rotations

AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal:

AVL Rotation Practice

6

4 12

14

8

15

7

1

AVL vs BST ADT
The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?

Find

Insert

Remove

