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Announcements

Exam 2 - 10/01 to 10/03

MP_Stickers survey processed - we will make some changes!

Mp_Lists survey out Today

Exam Regrades -  1. Go over exam with a staff member 
                               2. If unhappy, fill out regrade request form  
                                    (and mention staff member’s name)  
  



Learning Objectives

BST : Challenges and Solutions

AVL Tree :  self-balancing BST

Review kd tree : Nearest Neighbor Search

Briefly review BST in the context of height



Nearest Neighbor: k-d tree



Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…
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Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

… But if we dont find exact match, have to find nearest neighbor



Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store “best” possibility as 
you trace back



Nearest Neighbor: k-d tree



Nearest Neighbor: k-d tree
On ties, use smallerDimVal to determine which point remains curBest



Nearest Neighbor: k-d tree
Why do we need to explore this subtree?



Nearest Neighbor: k-d tree



BST Analysis – Running Time

Operation
BST Worst Case

find O(h)

insert O(h)

remove O(h)

traverse O(n)
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BST Analysis

Every operation on a BST depends on the height of the tree.

… how do we relate  to , the size of our dataset?O(h) n



Quiz

What is the range of number of nodes in a binary tree of height  ? 
 
1. (h, 2h) 
 
2. (h+1, 2h) 
 
3. (h+1, 2h+1 ) 
 
4. (h+1, 2h+1 - 1) 
 
5. (h+1, 2h - 1)

h



BST Analysis

A BST of  nodes has a height between:n

Lower-bound: 
h = Ω(log n)

Upper-bound:  
h = O(n)
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Height-Balanced Tree
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What tree is better?

Height balance: b = height(TR) − height(TL)

A tree is “balanced” if:  |b| <= 1 for every node  

b = 0 b = 2



Quiz
Which of the following binary trees are balanced? 
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Option A: Correcting bad insert order
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 2, 3, 4, 5, 6, 7]             BAD

Insert Order: [4, 6, 2, 3, 7, 1, 5]             GOOD

Random Order :  Mostly GOOD, sometimes BAD - as you’ve seen in lab_BST



AVL-Tree: A self-balancing binary search tree
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Rather than fixing an insertion order, just correct the tree as needed!

 Adelson Velsky, 
Evgenii Landis 1962



BST Rotations (The AVL Tree)

These rotations, when used correctly:

1. Modify the arrangement of nodes while preserving BST property

2. Reduce tree height by one

We can adjust the BST structure by performing rotations.



BST Rotations (The AVL Tree)
To begin, lets find the imbalance in the following tree:
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Left Rotation
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1) Create a tmp pointer to root

tmp
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1) Create a tmp pointer to root

2) Update root to point to mid

X
tmp
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Left Rotation
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1) Create a tmp pointer to root

2) Update root to point to mid

tmp

3) tmp->right = root->left
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Left Rotation
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1) Create a tmp pointer to root

2) Update root to point to mid

tmp

3) tmp->right = root->left

4) root->left = tmp



Right Rotation
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Right Rotation
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Coding AVL Rotations
Two ways of visualizing: 

1) Think of an arrow ‘rotating’ around the center 

51
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C D2) Recognize that there’s a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft? 

Replace current (root) node with it’s right child. 

Set the right child’s left child to be the current node’s right

Make the current node the right child’s left child



AVL Rotation Practice
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AVL Rotation Practice
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Somethings not quite right…



LeftRight Rotation
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LeftRight Rotation
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RightLeft Rotation
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RightLeft Rotation
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AVL Rotations



AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal: 



AVL Rotation Practice
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AVL vs BST ADT
The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?

Find

Insert

Remove


