
Department of Computer Science

Data Structures

KD Tree 2
September 29, 2025 CS 225

Harsha Tirumala

Announcements

Exam 2 this week - 10/01 to 10/03

Review of practice exam 2 - notes + video

MP lists due today

https://drive.google.com/file/d/1rME0d4RH9p2-nALFAy5wdfHTUJpVLCyL/view?usp=drive_link
https://mediaspace.illinois.edu/media/t/1_huf5223l

Learning Objectives

KD tree : Motivation and Creation

KD tree : Interval Search and Nearest Neighbor

Go over C++ concepts for mp_mosaics (probably shared as a separate video later)

KD tree : Pros and Cons

Range Search : Motivating example

Want
Protein
bars that
cost
between
10$ and
20$ as
well as
protein
between
5g and
15g

Range-based Searches
Consider a collection of points on a 1D line: p = {p1, p2, …, pn}

If I want to find all values between [A, B], how could I implement this?

3 6 11 33 41 44 55

Range-based Searches : Brute Force

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

What points in rectangle [(x1, y1), (x2, y2)]?

1. Brute Force : Check each point for validity

 (x1 <= x <= x2 && y1 <= y <= y2)

For k dimensional data : O(kn)

p1 p2 p3 p4 P5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Range-based Searches (bisecting planes)

 k-d tree : Example
A k-d tree is similar but splits on points:

Data - (7,2), (5,4), (9,6), (4,7), (2,3), (8,1), (9,8)

Step 1 - Split on x-median (7,2)

(5,4), (4,7), (2,3) (9,6), (8,1), (9,8)

Step 2 - Split on y-median

(5,4), (4,7), (2,3) (9,6), (8,1), (9,8)

(2,3) (4,7) (8,1) (9,8)

Step 3 - Split on x-median

(2,3) (4,7) (8,1) (9,8)

 k-d tree : Build

 k-d tree : Properties

Height of a kd -tree on n points : O(log n)

Time complexity of building a kd -tree on n points : O(n log n)

 k-d tree : Range Search

Nearest Neighbor search

p1

p2

p4

p3

p7

p5 p6

Consider points in 2D: p = {p1, p2, …, pn}

What is nearest point to (x1, y1)?

Brute Force : Query distance of each point pi from (x1, y1) and pick closest

Time Complexity : O(kn)

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

… But if we dont find exact match, have to find nearest neighbor

Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store “best” possibility as you trace back

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
On ties, use smallerDimVal to determine which point remains curBest

Nearest Neighbor: k-d tree
Why do we need to explore this subtree?

Nearest Neighbor: k-d tree

Kd tree : Pros and Cons

KD tree Comments

Build O(n log n) Worth paying this cost if
we anticipate many
queries

Range Search O(n^(1 - 1/k) + m) Good for low dimensions

Curse of Dimensionality -
Bad as k increases

Nearest Neighbor Search O(log n) : Average Case

O(n) : Worst case

Depends on distribution
of data

Insert/Remove data O(log n) : Average Case

O(n) : Worst case

Depends on distribution
of data

m : #outputs

Tips and Tricks for MP_Mosaics

1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator>
void select(RandIter start, RandIter end, RandIter k, Comparator cmp)
{
 /**
 * @todo Implement this function!
 */

 }

1

2

3

4

5

6

7

8

9

Understanding ‘randIter’

Forward

Bidirectional

Random Access

An iterator is a container giving access in different ways:

Implementing quickselect with RandIter

Swap items using std::swap()

Random Access Iterator lets you:

template <typename RandIter, typename Comparator>
void BlackBox(RandIter A, RandIter B)
{

 std::swap(*A, *B);

}

1

2

3

4

5

6

7

8

9

Hint: Look at pseudo-code for quickselect!

Implementing quickselect with RandIter

Access container indices using math operations

Random Access Iterator lets you:

Get distance between two iterators

// True if A is earlier in container than B

// The distance between A and B

randIter A;

auto nth = *(A + n);

randIter A, B;

A < B;

A - B;

Implementing quickselect with RandIter

Do most things you’d expect an array to be able to do!

Random Access Iterator lets you:

The power of the Interface!

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

Tips and Tricks for MP_Mosaics

1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

template <typename RandIter, typename Comparator>
void select(RandIter start, RandIter end, RandIter k, Comparator cmp)
{
 /**
 * @todo Implement this function!
 */

 }

1

2

3

4

5

6

7

8

9

Consider the function from Excel
COUNTIF(range, criteria)

Functions as arguments

template <typename Iter, typename Pred>

int Countif(Iter begin, Iter end, Pred pred) {

 int count = 0;

 auto cur = begin;

 while(cur != end) {

 if(pred(*cur))

 ++count;

 ++cur;

 }

 return count;

}

Countif.hpp

10

11

12

13

14

15

16

17

18

19

20

21

22

Functions as arguments

main.cpp

bool isNegative(int num) { return (num < 0); }

class IsNegative {

public:

 bool operator() (int num) { return (num < 0); }

};

int main() {

 std::vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999};

 auto isnegl = [](int num) { return (num < 0); };

 auto isnegfp = isNegative;

 auto isnegfunctor = IsNegative();

1

2

3

4

5

6

7

8

9

10

11

12

13

Lambda Functions in C++
Here are several ways to write a function as an object

[Capture](Arg List){ Function Body}

Lambda Functions in C++

[Capture](Arg List){ Function Body}

Lambda Functions in C++

Capture: Takes the value of object based on when the lambda was defined, NOT the current value of

the object!

Arg List: Standard way of inputing into a function

Function Body: Code can use both capture vars and arg vars

 int big;

 std::cout << "How big is big? ";

 std::cin >> big;

 auto isbig = [big](int num) { return (num >= big); };

 std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)

 << " big numbers" << std::endl;

}

2930

3132

33

34

35

36

37

38

main.cpp

Lambda Functions in C++

main.cpp

Lambda Functions in C++

Useful for mp_mosaics!

KD-Tree will split points in one dimension

When comparing, we need to remember what dimension we are in!

 int big;

 std::cout << "How big is big? ";

 std::cin >> big;

 auto isbig = [big](int num) { return (num >= big); };

 std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)

 << " big numbers" << std::endl;

}

2930

3132

33

34

35

36

37

38

Tips and Tricks for MP_Mosaics
Final tips:

The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully

