
Department of Computer Science

Data Structures
Tree Traversal

September 17, 2025 CS 225
Brad Solomon & Harsha Tirumala

Extra Credit Reminder
MP submission on PL has two separate submissions

The extra credit portion will only test part 1

Completion of the extra credit portion by the following
Monday is worth 4 points

MP_stickers feedback form out now!

Anonymous feedback form worth 2 points collectively

Learning Objectives

Discuss the tree ADT

Explore tree implementation details

Review and expand on foundational tree terminology

Lets define additional terminology for different types of binary trees!

1. Full Tree

2. Perfect Tree

3. Complete Tree

Binary Tree

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1. F = Ø

2. F = (data, Ø, Ø)

3. F = (data, Fl ≠ Ø, Fr ≠ Ø)

A full tree is a binary tree where every node has either 0 or 2 children

Full binary tree : Size

• Question - Which of the following are possible sizes (# of nodes) for a full binary tree?

a) 2 b) 5 c) 7 d) 8

A) 2 and 8

B) 5 and 7

C) 7 only

D) All of these

E) None of these

Join Code : 225

Binary Tree: perfect

A tree P is perfect if and only if:

1.

2.

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Binary Tree: perfect

A tree P is perfect if and only if:

1. Ph = (data, Ph−1, Ph−1)

2. P0 = (data, Ø, Ø) ≡ P−1 = Ø

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Perfect binary tree : Size

• Question - Which of the following are possible sizes (# of nodes) for a perfect binary tree?

a) 2 b) 5 c) 7 d) 8

A) 2 and 8

B) 5 and 7

C) 7 only

D) All of these

E) None of these Join code : 225

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1.

2.

3.

The last level contains at least one node (and is pushed to left)

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1. Ch = (data, Ch−1, Ph−2)

2. Ch = (data, Ph−1, Ch−1)

3. C−1 = Ø

The last level contains at least one node (and is pushed to left)

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2

1. Ch = (data, Ch−1, Ph−2)

2. Ch = (data, Ph−1, Ch−1)

3. C−1 = Ø

The last level contains at least one node (and is pushed to left)

Complete binary tree : Size

• Question - Which of the following are possible sizes (# of nodes) for a complete binary tree?

a) 2 b) 5 c) 7 d) 8

A) 2 and 8

B) 5 and 7

C) 7 only

D) All of these

E) None of these Join code : 225

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’ is very important.

Binary Tree

Binary Tree: Thinking with Types
Is every full tree complete?

Is every complete tree full?

Tree ADT

Insert

Remove

Traverse

Find

Constructor

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;

 ListNode * next;

 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;
 /* ... */
};

List.h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#pragma once

template <typename T>
class BinaryTree {
 public:
 /* ... */
 private:

 };

 TreeNode *root_;
 /* ... */
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Tree.h

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;

 ListNode * next;

 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;
 /* ... */
};

List.h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#pragma once

template <typename T>
class BinaryTree {
 public:
 /* ... */
 private:
 class TreeNode {
 T & data;

 TreeNode * left;

 TreeNode * right;

 TreeNode(T & data) :
 data(data), left(NULL),
right(NULL) { }

 };

 TreeNode *root_;
 /* ... */
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Tree.h

Visualizing trees

A

XS

2

C

2 5

Y

C

S X

A 2 2 5

Y

Ø Ø

Ø Ø Ø Ø ØØØ

Tree Insert / Remove acts like Linked List

C

B

A

D

A

D

B

C

Ø

Ø

Ø

Ø Ø

Tree Traversal

*-

b

+

/

c

d ea

A traversal of a tree T is an ordered way of visiting every node once.

Traversals
template<class T>
void BinaryTree<T>::_____Order(TreeNode * root)
{

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

*-

b

+

/

c

d ea

Traversals
template<class T>
void BinaryTree<T>::_____Order(TreeNode * root)
{

 if (root) {

 ______________________;

 _____Order(root->left);

 ______________________;

 _____Order(root->right);

 ______________________;

 }

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

*-

b

+

/

c

d ea

Traversals
template<class T>
void BinaryTree<T>::_____Order(TreeNode * root)
{

 if (root) {

 ______________________;

 _____Order(root->left);

 ______________________;

 _____Order(root->right);

 ______________________;

 }

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

*-

b

+

/

c

d ea

Tree Traversals
112

4

1

5

6

8 103

7 9

Pre-order:

In-order:

Post-order:

Tree Traversals (Solution)
112

4

1

5

6

8 103

7 9

Pre-order: 1 2 3 5 4 6 11 8 7 10 9

In-order: 3 2 4 5 6 1 8 7 11 9 10

Post-order: 3 4 6 5 2 7 8 9 10 11 1

Tip: Preorder always starts with root!

Tip: Inorder always starts with leftmost node. Root is after all left nodes!

Tip: Post always starts with leftmost node. Root is always LAST node!

Traversal vs Search

Traversal

Search

D

CB

F

A

E

G

U

O M

C W

A

T

E S

IN

There are two main approaches to searching a binary tree:

Tree Search

Depth First Search

112

4

1

5

6

8 103

7 9

Explore as far along one path as possible before backtracking

Depth First Search

112

4

1

5

6

8 103

7 9

Explore as far along one path as possible before backtracking

Make a stack (initialized with root)

While stack not empty:

tmp = stack.pop()

print(tmp)

stack.push(tmp->right)
stack.push(tmp->left)

Stack:
Print:

Breadth First Search

112

4

1

5

6

8 103

7 9

Fully explore depth i before exploring depth i+1

Breadth First Search

112

4

1

5

6

8 103

7 9

Fully explore depth i before exploring depth i+1

Make a queue (initialized with root)

While queue not empty:

tmp = queue.dequeue()

print(tmp)

queue.enqueue(tmp->left)
queue.enqueue(tmp->right)

Queue:
Print:

Level-Order Traversal

*-

b

+

/

c

d ea

template<class T>
void BinaryTree<T>::lOrder(TreeNode * root)
{

Queue<TreeNode*> q;
q.enqueue(root);

while(q.empty() == False){

TreeNode* temp = q.head();
process(temp);

q.dequeue();

q.enqueue(temp->left);
q.enqueue(temp->right);

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Tree Search
How can we improve our ability to search a binary tree?

What do we trade in order to do so?

