Data Structures

Tree Traversal

CS 225 September 17, 2025
Brad Solomon & Harsha Tirumala

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Extra Credit Reminder

MP submission on PL has two separate submissions
The extra credit portion will only test part 1
Completion of the extra credit portion by the following
Monday is worth 4 points

MP_stickers feedback form out now!

Anonymous feedback form worth 2 points collectively

L? 7& 2) I/ A Ed 2

Learning Objectives

Review and expand on foundational tree terminology
Discuss the tree ADT

Explore tree implementation details

I?inaryTre/e —) Ac«jo\fc,/ C>»AV\<¢\7¢) jV £ 9 hildren

Lets define additional terminology for different types of binary trees!

1. Full Tree

2. Perfect Tree

3. Complete Tree

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

-

A tree F is full if and only if:

1.

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

A tree F is full if and only if:

2. F = (data, 9, O) — ° e
)y AN
@FZ#QF#@) = MI’m%‘ >@
4 VN

L/\/\/),—/'

Full binary tree : Size > Oﬂ% /

-_//

« Question - Which of the following are possible sizes (# of nodes) for a full binary tree?

)2 s 97 d)8 E E

A)2 and 8 lﬁ“(ﬁ E -
B)S and 7] o- / -
C)<70nly AV j ﬁ% E '

Join Code : 225

D) All of these .@'/_

E) None of these

Bmary Tree: perfECt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

—

A tree P is perfect if and only if:

1.

Bmary Tree: perfECt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if: RN

1.P, = (data, P,,_, P;,_;)
— ‘ o
h~{
2.Py = (data,,0)= P_, =0
RN ROGRO

N/

: : K
Perfect binary tree:S|ze/7 92— Zmﬁ

« Question - Which of the following are possible sizes (# of nodes) for a perfect binary tree?

a) 2 b) 5 c)7 d)8

A)2 and 8 3"/_ v ﬁ

B)5 and 7 7/ §\

oD 2D ﬁ
D) Allo U

E) None of these ’3 / ;7 Join code : 225

)Q

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

A tree Cis complete if and only if:

g N

1.

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

A tree Cis complete if and only if: PH 4 veuf-

/ \
1.C, = (data,C,_{, P),_») P(,\ Kin 1
——— ’\
W = o P\

2

2.C, = (data, Ph 1, G 1) Q @@ @
Vev\ed/
/@ @ A =y

3.C_, =0 ©® ®/°> >

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

/

2.C, = (data, P;,_{,C;_) @ @@

A tree Cis complete if and only if:

1.C, = (data,Cy_, P;,_»)

3. C—l — @

L 7
Complete bmary tree |ze o/i

« Question - Which of the following are possible sizes (# of nodes) for a complete binary tree?

a) 2 b) 5 c)7 d) 8

A)2 and 8 BD[

arow oy é/ g@\&

E) None of these

Join code : 225

Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure

\

e

2. Understanding how to think ‘recursively’is very important.

—_—— I

Binary Tree: Thinking with Types

s every full tree complete? % ({%

s every complete tree full? \/ /2@ =Ic f/\('{(/

)< = -

Tree ADT
Insert - <\¢\S4/‘/[’ N \7\@%

Remove e U NULT B N D

Traverse _— ©oply
Mo

nd oy (Shucwre)

Constructor

e

List.h

Tree.h

wWodJdJoUrdWNKE

#pragma once

template <typename T>
class List {
public:
/* ... */
private:
class ListNode {
T & data;

ListNode * next;

ListNode (T & data) :
data (data), next(NULL) { }

iy

ListNode *head ;
/* ... */
};

WodJdJoUrdWNE

#pragma once

template <typename T>

class BinaryTree ({
public:
/* ... */

private:

};

TreeNode *root

/* ... */
iy

.
4

List.h Tree.h

1 | #pragma once 1 | #pragma once

2 2

3 | template <typename T> 3 | template <typename T>

4 | class List { 4 | class BinaryTree ({

5 public: 5 public:

6 /* */ 6 /* */

7 private: 7 private:

8 class ListNode { 8 class TreeNode {

9 T & data; 9 T & datas

10 10 ‘ -

11 ListNode * next; 11 TreeNode * left;

12 o prm— 12 —_—

13 13 TreeNode * right;

14 14

15 ListNode (T & data) 15 TreeNode (T & data) :
16 data(data) , next (NULL) { } 16 data(data), left (NULL),
17 }; 17 | right (NULL) { }

18 18

19 19 };
20 20
21 ListNode *head ; 217 TreeNode *root ;
29 /% */ CfE”” :> /% x/
23 | }; 237}

Visualizing trees

Sl b

S e

e | __

<

SRR

S e

S e

S e

Tree Insert / Remove acts like Linked List

AN
/

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

Pinl // 0) oo 5

Traversals
(= template<class T>
0 A N\ void BinaryTree<T>:: Order (TreeNode * root)

{

pre—o rhev Fromwersak

RRRRR
BW WOl WN KR

HERRRR
© o doy WU
/

N
o

N
'—l
[—

Traversals
template<class T>

void BinaryTree<T>:: JzLOrder(TreeNode * root)
N e e e
if (root
w?f\"’\kcfo@f\;
' vdwv
9 ve Order (root->left) ; w;::;*ﬂQﬂﬂ
10 e —
@ 0 @ @ 11 ; ol
12 v
13 Ef Order (root->right) ;
14 Qf/ \S/
° % 15 ;
()]

)P (WLY) ié | C@]?\a:_ pree. v \[g

00 J b wWPNhRE

Traversals

1| template<class T>

2|void BinaryTree<T>:: Order (TreeNode * root)
3({

4

5 if (root) {

6

7 ;

8

0 Order (root->left) ;

OIRONOIROL"
11 ;

12
13 Order (root->right) ;

14
® © : |

Tree Traversals (1) @
2 (=

Pre-order: \/ YOou (/ leﬂ/ v (‘?[\ [’“

In-order: [€ {‘/% o J/ o 74_1/
Post-order: [QH’ Y{O)M_ Ydok

Tree Traversals (Solution) (1)
(2 (1,

ORSONR OO
ORRONOIO

Pre-order: 1235461187109
Tip: Preorder always starts with root!
In-order:3245618711910

Tip: Inorder always starts with leftmost node. Root is after all left nodes!

Post-order:346527891011 1
Tip: Post always starts with leftmost node. Root is always LAST node!

Traversal vs Search

Traversal

Search

Tree Search

There are two main approaches to searching a binary tree:

Depth First Search

Explore as far along one path as possible before backtracking

Depth First Search

Explore as far along one path as possible before backtracking

Make a stack (initialized with root) e

While stack not empty: e @
tmp = stack.pop()

print(tmp) e e ° Q

stack.push(tmp->right)

stack.push(tmp->left) o e ° o

Stack:
Print;

Breadth First Search
Fully explore depth i before exploring depth i+1

Breadth First Search
Fully explore depth i before exploring depth i+1

Make a queue (initialized with root) e

While queue not empty: e @
tmp = queue.dequeue()

print(tmp) e e ° Q

gueue.enqueue(tmp->left)

queue.enqueue(tmp->right) ° e ° °

Queue;
Print:

Level-Order Traversal

1| template<class T>
2|void BinaryTree<T>: :1lOrder (TreeNode * root)
3[{
4
5 Queue<TreeNode*> q;
‘ e 6 g.enqueue (root) ;
7
8 while(g.empty () == False) {
9
° 0 ° e 10 TreeNode* temp = q.head();
11 process (temp) ;
12
13 qg.dequeue () ;
© o :
15 qg.enqueue (temp->left) ;
16 g.enqueue (temp->right) ;
17
18 }

Tree Search

How can we improve our ability to search a binary tree?

What do we trade in order to do so?

