Data Structures Tree Traversal

CS 225 September 17, 2025 Brad Solomon & Harsha Tirumala

Extra Credit Reminder

MP submission on PL has two separate submissions

The extra credit portion will only test part 1

Completion of the extra credit portion by the following Monday is worth 4 points

MP_stickers feedback form out now!

Anonymous feedback form worth 2 points collectively

570% or more 7

Learning Objectives

Review and expand on foundational tree terminology

Discuss the tree ADT

Explore tree implementation details

Binary Tree >> Acyclic, Connected f \le 2 children

Lets define additional terminology for different **types** of binary trees!

1. Full Tree

2. Perfect Tree

3. Complete Tree

Binary Tree: full

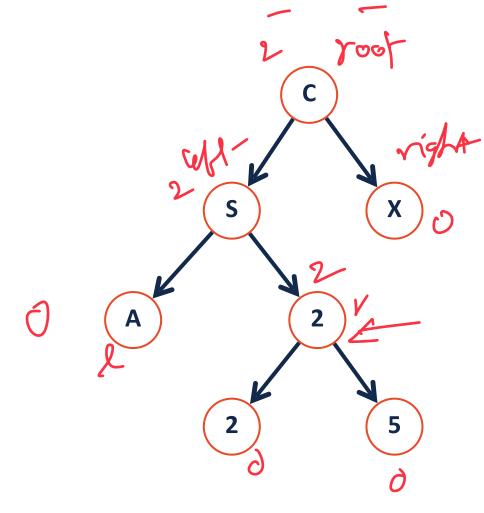
A **full tree** is a binary tree where every node has either 0 or 2 children

A tree **F** is **full** if and only if:

1.

2.

3.



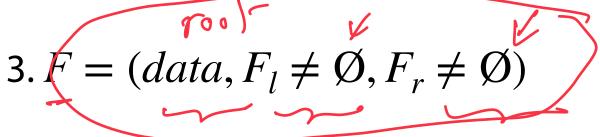
Binary Tree: full

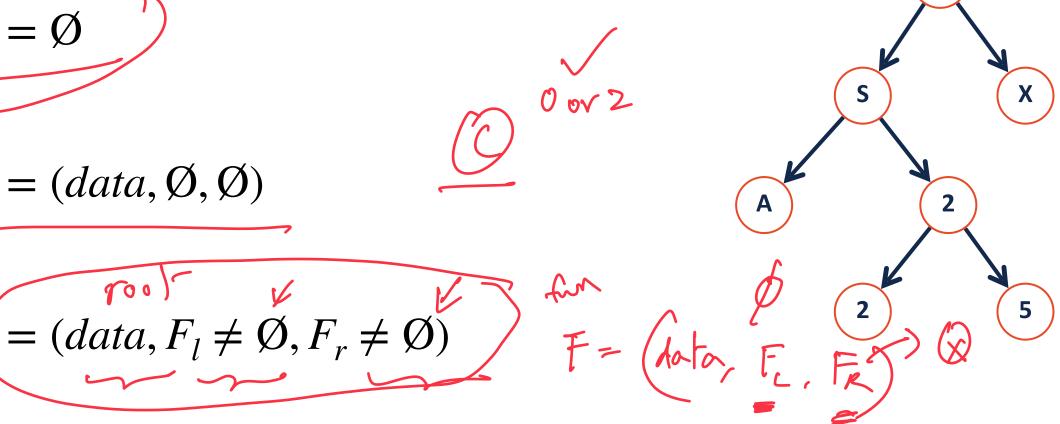
A **full tree** is a binary tree where every node has either 0 or 2 children

A tree **F** is **full** if and only if:

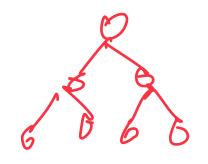
$$1.F = \emptyset$$

$$2.F = (data, \emptyset, \emptyset)$$





Full binary tree : Size) Odf



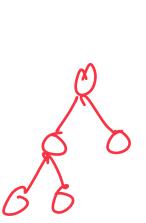
- Question Which of the following are possible sizes (# of nodes) for a full binary tree?
 - a) 2

- b) 5
- c) 7

d) 8

A) 2 and 8

- B) 5 and 7
- C) 7 only
- D) All of these
- E) None of these



Join Code: 225

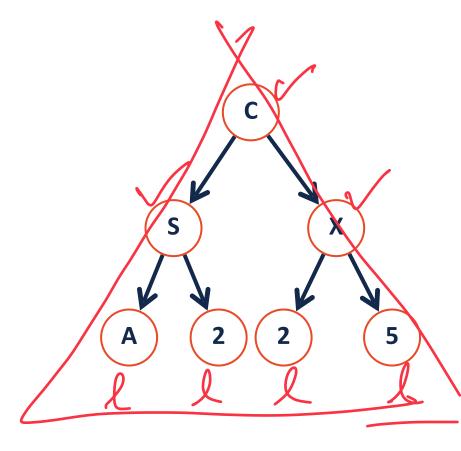
Binary Tree: perfect A perfect tree is a binary tree where...

Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

1.

2.



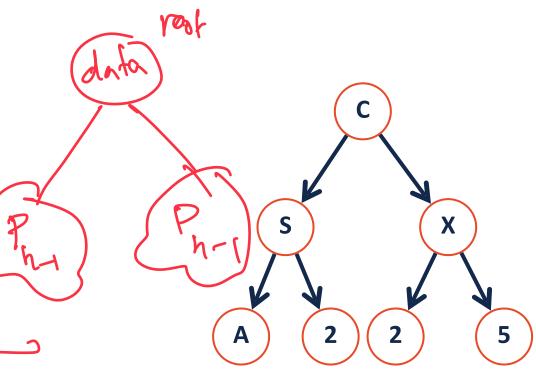
Binary Tree: perfect A perfect tree is a binary tree where...

Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

1.
$$P_h = (data, P_{h-1}, P_{h-1})$$

$$2.P_0 = (data, \emptyset, \emptyset) \equiv P_{-1} = \emptyset$$



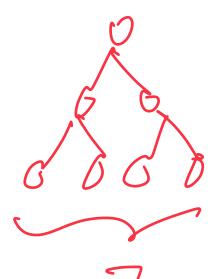
Perfect binary tree: Size > 2-1

- Question Which of the following are possible sizes (# of nodes) for a perfect binary tree?
 - a) 2

- b) 5
- c) 7

d) 8

- A) 2 and 8 3 ^__
- B) 5 and 7 7 · (
- C) 7 only 86.7.
- D) All of these
- E) None of these 3 /



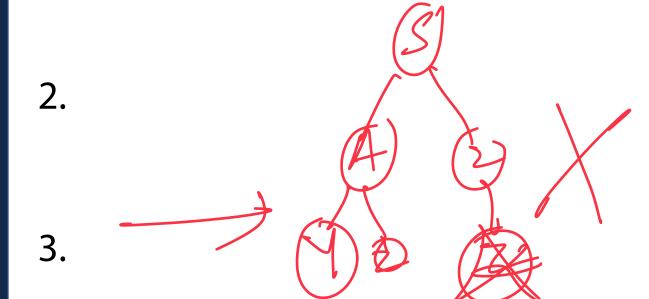
Binary Tree: complete A complete tree is a B.T. where...

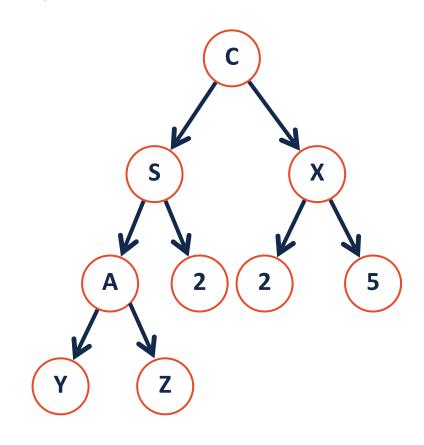
All levels except the last are completely filled.

The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

1.





Binary Tree: complete

A **complete tree** is a B.T. where...

All levels except the last are completely filled.

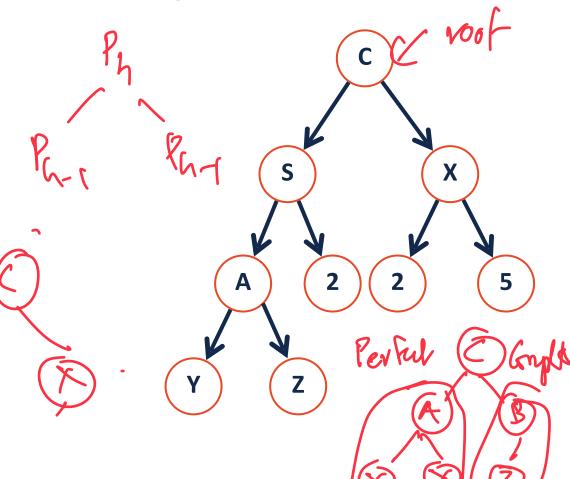
The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

1.
$$C_h = (data, C_{h-1}, P_{h-2})$$

2.
$$C_h = (data, P_{h-1}, C_{h-1})$$

3.
$$C_{-1} = \emptyset$$



Binary Tree: complete

A **complete tree** is a B.T. where...

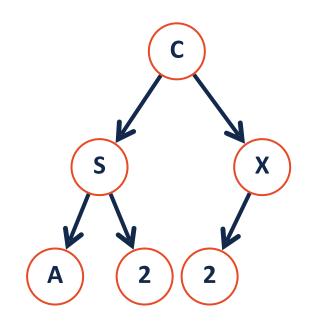
All levels except the last are completely filled.

The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

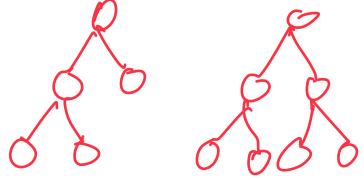
1.
$$C_h = (data, C_{h-1}, P_{h-2})$$

2.
$$C_h = (data, P_{h-1}, C_{h-1})$$



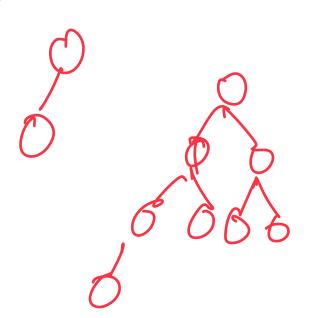
3.
$$C_{-1} = \emptyset$$

Complete binary tree : Size



- Question Which of the following are possible sizes (# of nodes) for a complete binary tree?
 - a) 2
- b) 5 c) 7
- d) 8

- A) 2 and 8 35%
- B) 5 and 7
- C) 7 only
- D) All of these
- E) None of these



Join code: 225

Binary Tree

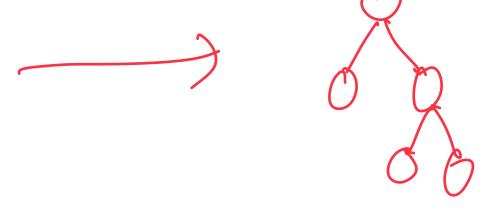
Why do we care?

1. Terminology instantly defines a particular tree structure

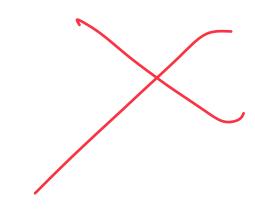
2. Understanding how to think 'recursively' is very important.

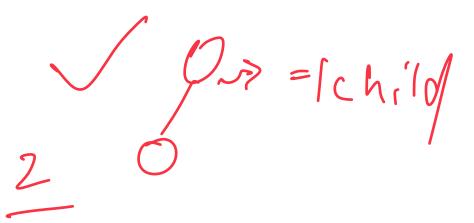
Binary Tree: Thinking with Types

Is every **full** tree **complete**?



Is every **complete** tree **full**?





Tree ADT

Insert _ insert new nodes

- remove holds Remove

Traverse — ophiom

_ Search (Structure) Find

Constructor

List.h

```
#pragma once
   template <typename T>
   class List {
    public:
     /* ... */
     private:
       class ListNode {
         T & data;
10
11
         ListNode * next;
12
13
14
15
         ListNode(T & data) :
16
          data(data), next(NULL) { }
17
       };
18
19
20
21
       ListNode *head ;
22
       /* ... */
23
   };
```

```
#pragma once
   template <typename T>
   class BinaryTree {
    public:
       /* ... */
    private:
10
11
12
13
14
15
16
17
18
19
       };
20
21
       TreeNode *root ;
22
       /* ... */
23 };
```

Tree.h

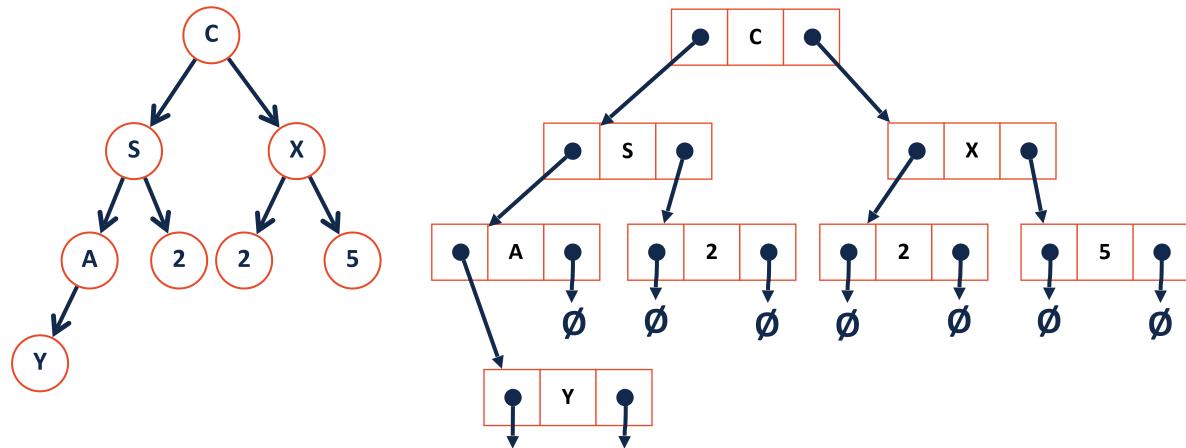
List.h

```
#pragma once
   template <typename T>
   class List {
    public:
     /* ... */
     private:
       class ListNode {
         T & data;
10
11
         ListNode * next;
12
13
14
15
         ListNode(T & data) :
16
          data(data), next(NULL) { }
17
       };
18
19
20
21
       ListNode *head ;
22
       /* ... */
23
   };
```

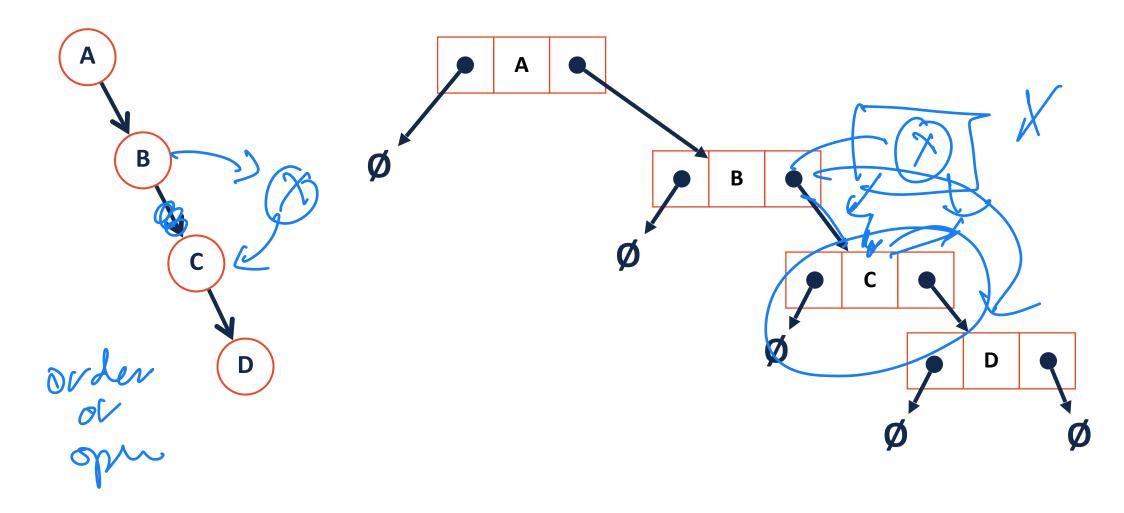
```
#pragma once
   template <typename T>
   class BinaryTree {
     public:
       /* ... */
     private:
       class TreeNode {
         T & data,
10
11
         TreeNode * left;
12
13
         TreeNode * right;
14
15
         TreeNode(T & data) :
16
          data(data), left(NULL),
   right(NULL) { }
18
19
       };
20
21
       TreeNode *root ;
23
       /* ... */
23
```

Tree.h

Visualizing trees

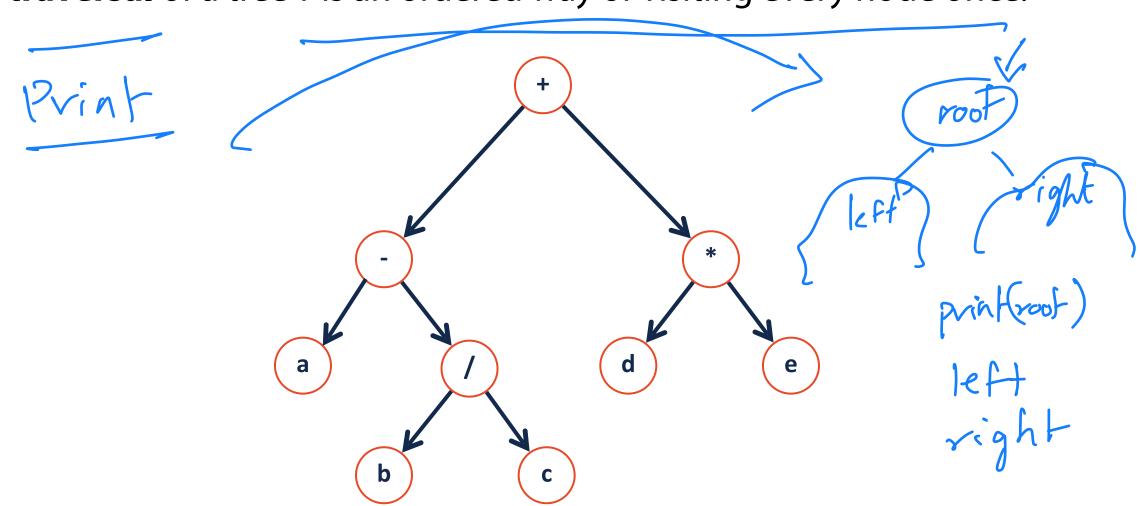


Tree Insert / Remove acts like Linked List



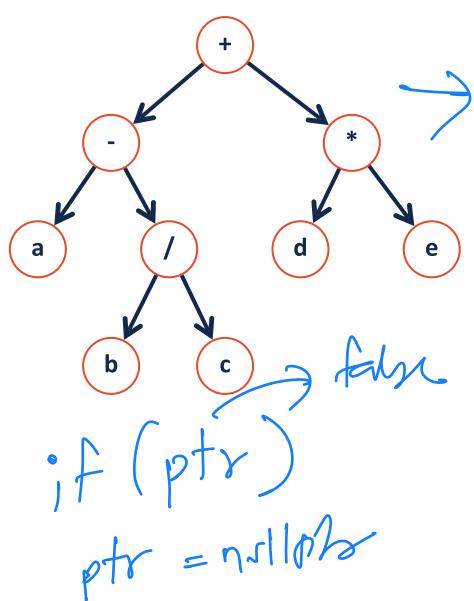
Tree Traversal

A **traversal** of a tree T is an ordered way of visiting every node once.



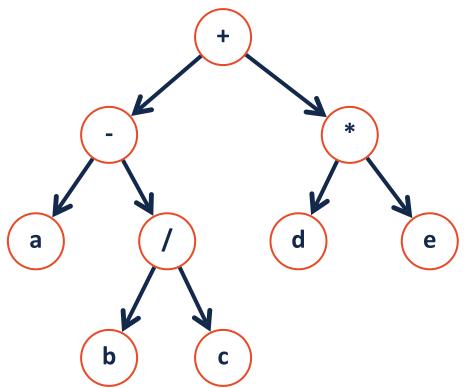
Traversals template<class T> void BinaryTree<T>:: Order(TreeNode * root) pre-order traversal

Traversals



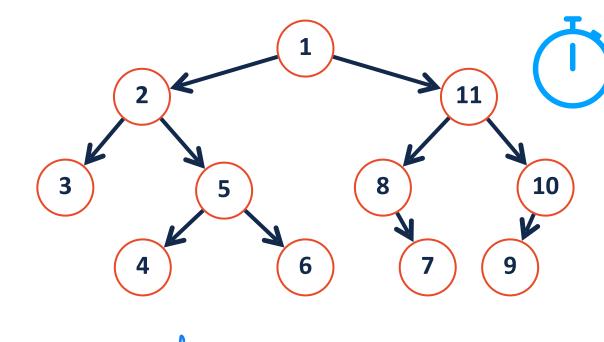
```
template<class T>
  void BinaryTree<T>:: pvc Order(TreeNode * root)
    if (root)
         Order(root->left);
11
           C Order(root->right);
13
14
15
16
18
19
20
```

Traversals



```
template<class T>
                             Order(TreeNode * root)
   void BinaryTree<T>::
     if (root) {
              Order(root->left);
10
11
12
13
              Order(root->right);
14
15
16
17
18
19
20
```

Tree Traversals



Pre-order:

voor left right

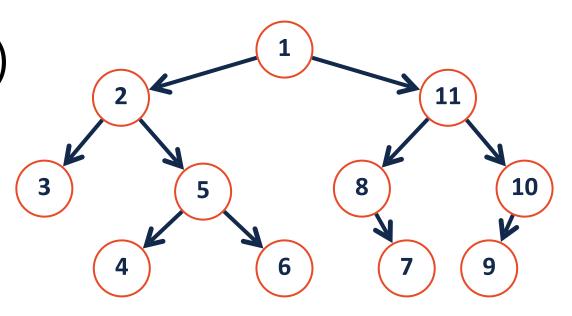
In-order:

left voot right

Post-order:

left right root

Tree Traversals (Solution)



Pre-order: 1 2 3 5 4 6 11 8 7 10 9

Tip: Preorder always starts with root!

In-order: 3 2 4 5 6 **1** 8 7 11 9 10

Tip: Inorder always starts with leftmost node. Root is after all left nodes!

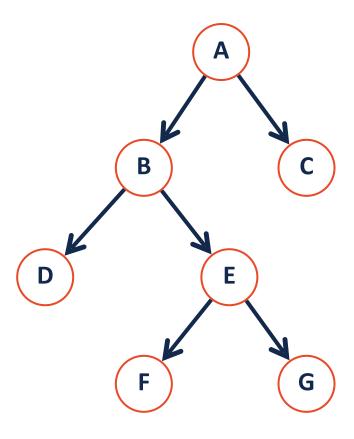
Post-order: 3 4 6 5 2 7 8 9 10 11 1

Tip: Post always starts with leftmost node. Root is always LAST node!

Traversal vs Search

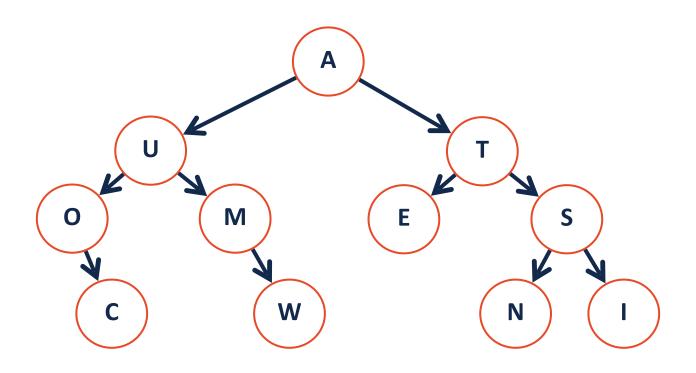
Traversal

Search



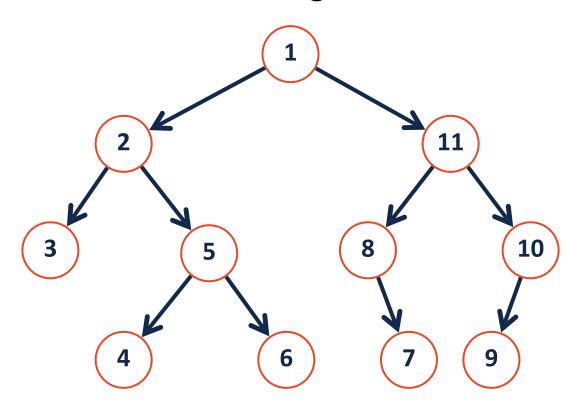
Tree Search

There are two main approaches to searching a binary tree:



Depth First Search

Explore as far along one path as possible before backtracking



Depth First Search

Explore as far along one path as possible before backtracking

Make a stack (initialized with root)

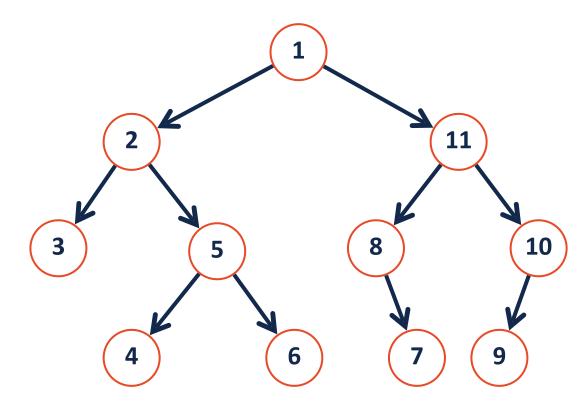
While stack not empty:

```
tmp = stack.pop()
```

print(tmp)

stack.push(tmp->right)

stack.push(tmp->left)

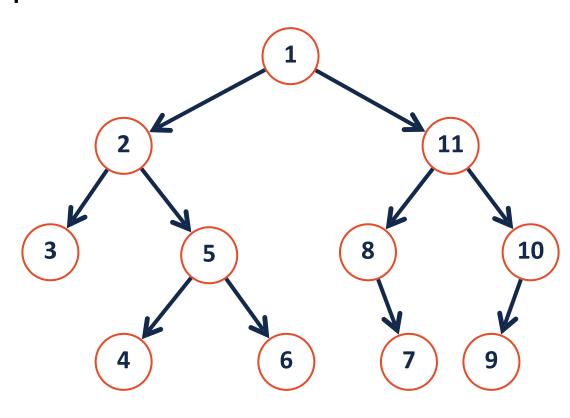


Stack:

Print:

Breadth First Search

Fully explore depth i before exploring depth i+1



Breadth First Search

Fully explore depth i before exploring depth i+1

Make a queue (initialized with root)

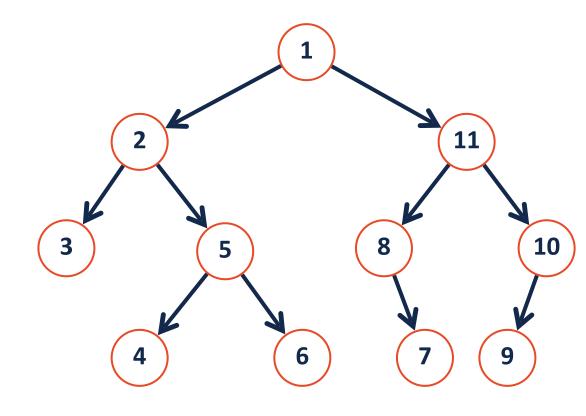
While queue not empty:

```
tmp = queue.dequeue()
```

print(tmp)

queue.enqueue(tmp->left)

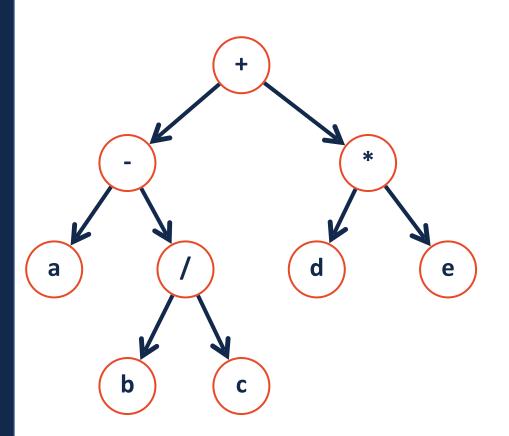
queue.enqueue(tmp->right)



Queue:

Print:

Level-Order Traversal



```
template<class T>
 2 void BinaryTree<T>::1Order(TreeNode * root)
      Queue<TreeNode*> q;
      q.enqueue (root);
      while( q.empty() == False){
          TreeNode* temp = q.head();
10
11
         process(temp);
12
13
          q.dequeue();
14
          q.enqueue(temp->left);
15
          q.enqueue(temp->right);
16
17
18
19 }
```

Tree Search

How can we improve our ability to search a binary tree?

What do we trade in order to do so?