
Department of Computer Science

Data Structures
Tree Definitions

September 15, 2025 CS 225
Brad Solomon & Harsha Tirumala

MP_stickers ‘score undefined error’ debug steps:

1. Did you implement test_invert()? Its required!

2. Are you accidentally assigning a type T as an Image?

Ex: T img = Image(1,1);

3. If you ‘return false’ in test_invert() does it fix itself?

4. If you return a blank image in render() does it fix itself?

5. Contact course staff or go to OH!

MP_Lists out now!
MP submission on PL has two separate submissions

The extra credit portion will only test part 1

Completion of the extra credit portion by the following
Monday is worth 4 points

Exam 1 (9/17 — 9/19)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam is out on PL now

Topics covered can be found on website

Register now

https://courses.engr.illinois.edu/cs225/fa2025/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives
Review trees and binary trees

Discuss the tree ADT

Explore tree implementation details

Practice tree theory with recursive definitions and proofs

8 2 5
Ø

Cur. Location Cur. Data Next

ListNode *
curr

Curr->data Curr->next

unsigned
index

data[index] index++

Some form
of

(x, y, z)

??? ???

Iterators
We want to be able to loop through all elements for any underlying
implementation in a systematic way

Iterators
For a class to implement an iterator, it needs two functions:

Iterator begin()

Iterator end()

Returns an Iterator object pointing at the ‘first item’

Returns an Iterator object pointing one entry past end of dataset

Iterators
The actual iterator is defined as a class inside the outer class:

Iterator& operator ++()

1. It must be of base class std::iterator

2. It must implement at least the following operations:

const T & operator *()

bool operator !=(const Iterator &)

Iterators

template <class T>
class List {

 class ListIterator : public
std::iterator<std::bidirectional_iterator_tag, T> {
 public:

 ListIterator& operator++();

 ListIterator& operator--()

 bool operator!=(const ListIterator& rhs);

 const T& operator*();
 };

 ListIterator begin() const;

 ListIterator end() const;
};

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Here is a (truncated) example of an iterator:

MP_List Iterator

class ListIterator {
 private:
 // @TODO: graded in mp_lists part 1
 ListNode* position_;

 public:
 …

 ListIterator() : position_(NULL) { }
 ListIterator(ListNode* x) : position_(x) { }

1
2
3
4

5
6
7
8
9

#include <list>
#include <string>
#include <iostream>

struct Animal {
 std::string name, food;
 bool big;
 Animal(std::string name = "blob", std::string food = "you", bool big = true) :
 name(name), food(food), big(big) { /* nothing */ }
};

int main() {
 Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
 std::vector<Animal> zoo;

 zoo.push_back(g);
 zoo.push_back(p); // std::vector’s insertAtEnd
 zoo.push_back(b);

 for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
 std::cout << (*it).name << " " << (*it).food << std::endl;
 }

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

stlList.cpp

std::vector<Animal> zoo;

/* Full text snippet */

 for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
 std::cout << (*it).name << " " << (*it).food << std::endl;
 }

/* Auto Snippet */

 for (auto it = zoo.begin(); it != zoo.end; ++it) {
 std::cout << (*it).name << " " << (*it).food << std::endl;
 }

/* For Each Snippet */

 for (const Animal & animal : zoo) {
 std::cout << animal.name << " " << animal.food << std::endl;
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

1) Acyclic — No path from node to itself

2) Rooted — A specific node is labeled root

1

2

3

4
5

6

Binary Tree

2

2S

C

5

A binary tree is a tree such that:T

1. T = Ø

2. T = (data, TL, TR)

A

XS

2

C

2 5 A

XS

2

C

2 5

S

2

C

2

5
A

X

Which of the following are binary trees?

A B C
Join Code: 225

Binary Tree Height

2

2S

C

5

Height: The length of the longest path from root to leaf

2 5

What is the height of a tree with zero nodes?

Binary Tree Height

height(T) = 1 + max(height(TL), height(TR))

Base Case: The height of the empty tree is -1

Recursive Step: Get height of left and right subtrees

Combining: Tree height is 1 plus the max of left or right height

Binary Tree Height

2

2S

C

5

Height: The length of the longest path from root to leaf

2 5

Height(root) = max (Height(TL), Height(TR)) + 1

Lets define additional terminology for different types of binary trees!

1.

2.

3.

Binary Tree

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1. F = Ø

2. F = (data, Ø, Ø)

3. F = (data, Fl ≠ Ø, Fr ≠ Ø)

A full tree is a binary tree where every node has either 0 or 2 children

Full binary tree : Size

• Question - Which of the following are possible sizes (# of nodes) for a full binary tree?

a) 2 b) 5 c) 7 d) 8

A) 2 and 8

B) 5 and 7

C) 7 only

D) All of these

E) None of these

Join Code : 225

Binary Tree: perfect

A tree P is perfect if and only if:

1.

2.

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Binary Tree: perfect

A tree P is perfect if and only if:

1. Ph = (data, Ph−1, Ph−1)

2. P0 = (data, Ø, Ø) ≡ P−1 = Ø

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Perfect binary tree : Size

• Question - Which of the following are possible sizes (# of nodes) for a perfect binary tree?

a) 2 b) 5 c) 7 d) 8

A) 2 and 8

B) 5 and 7

C) 7 only

D) All of these

E) None of these Join code : 225

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1.

2.

3.

The last level contains at least one node (and is pushed to left)

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1. Ch = (data, Ch−1, Ph−2)

2. Ch = (data, Ph−1, Ch−1)

3. C−1 = Ø

The last level contains at least one node (and is pushed to left)

Complete binary tree : Size

• Question - Which of the following are possible sizes (# of nodes) for a complete binary tree?

a) 2 b) 5 c) 7 d) 8

A) 2 and 8

B) 5 and 7

C) 7 only

D) All of these

E) None of these Join code : 225

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’ is very important.

Binary Tree

Binary Tree: Thinking with Types
Is every full tree complete?

Is every complete tree full?

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are ________ NULL pointers.

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL

N=2 has three NULL

Induction Step:

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

IS: Assume claim is true for , prove true for |T | ≤ k − 1 |T | = k

By def, . Let be the # of nodes in T = r, TL, TR q TL

Since exists, . By IH, has NULLr 0 ≤ q ≤ k − 1 TL q + 1

All nodes not in or exist in . So has nodesr TL TR TR k − q − 1

 is also smaller than so by IH, has NULLk − q − 1 k TR k − q

Total number of NULL is the sum of and : TL TR q + 1 + k − q = k + 1

Alternate proof (# of null ptrs)

Theorem: If there are n objects in our representation of a binary tree, then there are n+1
NULL pointers.

Proof -

We have n objects => 2n pointers.

Each pointer either points to (exactly 1) node or null.

Each node has exactly 1 incoming pointer (from its parent)

There are (n-1) children in total => total (n-1) pointers pointing to them

So, there are 2n - (n-1) = (n + 1) nullptrs.

Tree ADT

Insert

Remove

Traverse

Find

Constructor

BinaryTree.h
#pragma once

template <class T>
class BinaryTree {
 public:
 /* ... */

 private:

};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;

 ListNode * next;

 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;
 /* ... */
};

List.h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#pragma once

template <typename T>
class BinaryTree {
 public:
 /* ... */
 private:
 class TreeNode {
 T & data;

 TreeNode * left;

 TreeNode * right;

 TreeNode(T & data) :
 data(data), left(NULL),
right(NULL) { }

 };

 TreeNode *root_;
 /* ... */
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Tree.h

Visualizing trees

A

XS

2

C

2 5

Y

C

S X

A 2 2 5

Y

Ø Ø

Ø Ø Ø Ø ØØØ

Tree Traversal

*-

b

+

/

c

d ea

A traversal of a tree T is an ordered way of visiting every node once.

Traversals
template<class T>
void BinaryTree<T>::_____Order(TreeNode * root)
{

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

*-

b

+

/

c

d ea

