
Department of Computer Science

Data Structures
Queues, Iterators, and maybe Trees?

September 12, 2025 CS 225
Brad Solomon

Exam 1 (9/17 — 9/19)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be released on PL

Topics covered can be found on website

Register now

https://courses.engr.illinois.edu/cs225/fa2025/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Review trees and binary trees

Discuss the tree ADT

Practice tree theory with recursive definitions and proofs

Discuss the importance of iterators

• [Order]: LIFO

• [Implementation]: Array (such as std::vector)

• [Runtime]: O(1) Push and Pop

Stack ADT

Queue Data Structure
A queue stores an ordered collection of objects (like a list)

However you can only do two* operations:

Enqueue: Put an item at the back of the queue

Dequeue: Remove and return the front item of the queue

enqueue(3); enqueue(5); dequeue(); enqueue(2)

Front

Queue Data Structure
The queue is a first in — first out data structure (FIFO)

What data structure excels at removing from the front?

Can we make that same data structure good at inserting at the end?

Queue Data Structure
The C++ implementation of a queue is also a vector or deque — why?

Engineering vs Theory Efficiency
Time x1 billion Like

L1 cache reference 0.5 seconds Heartbeat 💓

Branch mispredict 5 seconds Yawn 😲

L2 cache reference 7 seconds Long yawn 😲 😲 😲

Mutex lock/unlock 25 seconds Make coffee ☕

Main memory reference 100 seconds Brush teeth

Compress 1K bytes 50 minutes TV show 📺

Send 2K bytes over 1 Gbps network 5.5 hours (Brief) Night's sleep 🛌

SSD random read 1.7 days Weekend

Read 1 MB sequentially from memory 2.9 days Long weekend

Read 1 MB sequentially from SSD 11.6 days 2 weeks for delivery 📦

Disk seek 16.5 weeks Semester

Read 1 MB sequentially from disk 7.8 months Human gestation 🐣

Above two together 1 year 🌍 ☀

Send packet CA->Netherlands->CA 4.8 years Ph.D. 🎓

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

Engineering vs Theory Efficiency
Time x1 billion Like

L1 cache reference 0.5 seconds Heartbeat 💓

Branch mispredict 5 seconds Yawn 😲

L2 cache reference 7 seconds Long yawn 😲 😲 😲

Mutex lock/unlock 25 seconds Make coffee ☕

Main memory reference 100 seconds Brush teeth

Compress 1K bytes 50 minutes TV show 📺

Send 2K bytes over 1 Gbps network 5.5 hours (Brief) Night's sleep 🛌

SSD random read 1.7 days Weekend

Read 1 MB sequentially from memory 2.9 days Long weekend

Read 1 MB sequentially from SSD 11.6 days 2 weeks for delivery 📦

Disk seek 16.5 weeks Semester

Read 1 MB sequentially from disk 7.8 months Human gestation 🐣

Above two together 1 year 🌍 ☀

Send packet CA->Netherlands->CA 4.8 years Ph.D. 🎓

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

Queue Data Structure

8 4

What do we need to track to maintain a queue with an array list?

q.enqueue(8);
q.enqueue(4);
q.dequeue();

Queue Data Structure
Unlike the array list, it is easier to implement a Queue using unsigned ints

#pragma once

template <typename T>
class Queue {
 public:
 void enqueue(T e);
 T dequeue();
 bool isEmpty();

 private:
 T *data_;
 unsigned size_;
 unsigned capacity_;
 unsigned front_;
};

Queue.h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#pragma once

template <typename T>
class Queue {
 public:
 void enqueue(T e);
 T dequeue();
 bool isEmpty();

 private:
 T *data_;
 unsigned capacity_;
 unsigned size_;
 unsigned front_;
};

Queue.h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Front

Size

Front

Size

(Circular) Queue Data Structure

Queue<int> q;
q.enqueue(3);
q.enqueue(8);
q.enqueue(4);
q.dequeue();
q.enqueue(7);
q.dequeue();
q.dequeue();
q.enqueue(2);
q.enqueue(1);
q.enqueue(3);
q.enqueue(5);
q.dequeue();
q.enqueue(9);

Size:

Front: Capacity:

Enqueue(D):

Dequeue():

Queue<int> q;
q.enqueue(3);
q.enqueue(8);
q.enqueue(4);
q.dequeue();
q.enqueue(7);
q.dequeue();
q.dequeue();
q.enqueue(2);
q.enqueue(1);
q.enqueue(3);
q.enqueue(5);
q.dequeue();
q.enqueue(9);

Size:

Front: Capacity:

Enqueue(D):

Dequeue():

Insert @ (size+front) % capacity
size++ until size == capacity

Remove @front
front = (front+1) % capacity
size--

Queue<int> q;
…
q.enqueue(D);
q.dequeue();
q.dequeue();
q.dequeue();
q.dequeue();
q.enqueue(E);

Size: 3

Front: 3 Capacity: 6

Enqueue(D): Add data to ‘back’ of queue

Dequeue():

A B C

Insert D at index (size+front) % capacity
size++ (as long as size != capacity)

Remove data at index front
front = (front+1) % capacity
size-- (as long as size != 0)

Queue<char> q;
…
q.enqueue(d);
q.enqueue(a);
q.enqueue(y);
q.enqueue(i);
q.enqueue(s);

m o n

Queue Data Structure: Resizing

Queue<char> q;
…
q.enqueue(d);
q.enqueue(a);
q.enqueue(y);
q.enqueue(i);
q.enqueue(s);

m o n

Queue Data Structure: Resizing

• [Order]:

• [Implementation]:

• [Runtime]:

Queue ADT

Iterators

8 2 5
Ø

We want to be able to loop through all elements for any underlying
implementation in a systematic way

8 2 5
Ø

Cur. Location Cur. Data Next

ListNode *
curr

unsigned
index

Some form
of

(x, y, z)

Iterators
We want to be able to loop through all elements for any underlying
implementation in a systematic way

Iterators
Iterators provide a way to access items in a container without exposing
the underlying structure of the container

Cube::Iterator it = myCube.begin();

while (it != myCube.end()) {
 std::cout << *it << " ";
 it++;
}

1
2
3
4
5
6
7

Iterators
For a class to implement an iterator, it needs two functions:

Iterator begin()

Iterator end()

Iterators
The actual iterator is defined as a class inside the outer class:

Iterator& operator ++()

1. It must be of base class std::iterator

2. It must implement at least the following operations:

const T & operator *()

bool operator !=(const Iterator &)

Iterators

template <class T>
class List {

 class ListIterator : public
std::iterator<std::bidirectional_iterator_tag, T> {
 public:

 ListIterator& operator++();

 ListIterator& operator--()

 bool operator!=(const ListIterator& rhs);

 const T& operator*();
 };

 ListIterator begin() const;

 ListIterator end() const;
};

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Here is a (truncated) example of an iterator:

#include <list>
#include <string>
#include <iostream>

struct Animal {
 std::string name, food;
 bool big;
 Animal(std::string name = "blob", std::string food = "you", bool big = true) :
 name(name), food(food), big(big) { /* nothing */ }
};

int main() {
 Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
 std::vector<Animal> zoo;

 zoo.push_back(g);
 zoo.push_back(p); // std::vector’s insertAtEnd
 zoo.push_back(b);

 for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
 std::cout << (*it).name << " " << (*it).food << std::endl;
 }

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

stlList.cpp

std::vector<Animal> zoo;

/* Full text snippet */

 for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
 std::cout << (*it).name << " " << (*it).food << std::endl;
 }

/* Auto Snippet */

 for (auto it = zoo.begin(); it != zoo.end; ++it) {
 std::cout << (*it).name << " " << (*it).food << std::endl;
 }

/* For Each Snippet */

 for (const Animal & animal : zoo) {
 std::cout << animal.name << " " << animal.food << std::endl;
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

1) Acyclic — No path from node to itself

2) Rooted — A specific node is labeled root

1

2

3

4
5

6

Binary Tree

2

2S

C

5

A binary tree is a tree such that:T

1. T = Ø

2. T = (data, TL, TR)

A

XS

2

C

2 5 A

XS

2

C

2 5

S

2

C

2

5
A

X

Which of the following are binary trees?

A B C
Join Code: 225

Lets define additional terminology for different types of binary trees!

1.

2.

3.

Binary Tree

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1. F = Ø

2. F = (data, Ø, Ø)

3. F = (data, Fl ≠ Ø, Fr ≠ Ø)

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: perfect

A tree P is perfect if and only if:

1.

2.

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Binary Tree: perfect

A tree P is perfect if and only if:

1. Ph = (data, Ph−1, Ph−1)

2. P0 = (data, Ø, Ø) ≡ P−1 = Ø

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

A

XS

2

C

2 5

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1.

2.

3.

The last level contains at least one node (and is pushed to left)

Binary Tree: complete

A tree C is complete if and only if:

All levels except the last are completely filled.

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1. Ch = (data, Ch−1, Ph−2)

2. Ch = (data, Ph−1, Ch−1)

3. C−1 = Ø

The last level contains at least one node (and is pushed to left)

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’ is very important.

Binary Tree

Binary Tree: Thinking with Types
Is every full tree complete?

Is every complete tree full?

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are ________ NULL pointers.

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL

N=2 has three NULL

Induction Step:

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

IS: Assume claim is true for , prove true for |T | ≤ k − 1 |T | = k

By def, . Let be the # of nodes in T = r, TL, TR q TL

Since exists, . By IH, has NULLr 0 ≤ q ≤ k − 1 TL q + 1

All nodes not in or exist in . So has nodesr TL TR TR k − q − 1

 is also smaller than so by IH, has NULLk − q − 1 k TR k − q

Total number of NULL is the sum of and : TL TR q + 1 + k − q = k + 1

Tree ADT

