Computer Science - University of Illinois Urbana-Champaign Fall 2025

P d

2.1

3.1

CS 225 - Lecture 8 Scribe : Harsha Srimath Tirumala

Learning Goals

Queue : FIFO data structure
Queue Implementation
Circular Queue

Iterators : motivation, definition

Queue - First In First Out

A queue stores an ordered collection of items. Queues support only two operations - Enqueue and Dequeue :

— FEnqueue : Put an item at the back of the queue.

— Dequeue : Remove and return the front item of the queue.

Since elements can only be inserted at the back and removed from the front, queues follow the First In First
Out model. Queues do NOT support random access.

Implementation

Requirements : Engueue - O(1) InsertBack and Dequeue - O(1) RemoveFront.

A Linked list already supports O(1) RemoveFront via the head- pointer. In order to support O(1) InsertBack,
storing an additional tail_ pointer suffices.

C++ implementation - Using a vector/deque (which themselves use an array list). Why?

1. Engineering - In practice, repeated calls for new allocation can be expensive. An array bypasses this due
to having a continuous chunks of memory; although,in CS 225 we will ignore these issues.

2. We can improve theory!

Queues using array lists

Queues require O(1) InsertBack and O(1) RemoveFront. Array lists do support O(1) InsertBack - as long as
the list is not at capacity. We now need to figure out how to implement RemoveFront in O(1).

Deisng choice - For the queue implementation, cap, size, front will all be of type unsigned int.

RemoveFront in O(1) time using array lists

Declaring a new variable front and using it to point to the element at the front can support RemoveFront in

O(1) time. front should be updated every time there is a dequeue operation.

Computer Science - University of Illinois Urbana-Champaign Fall 2025

3.2 Circular queue - motivation

— Consider a queue with n enqueue operations followed by (n — 3) dequeue operations. This queue has (n — 3)
available slots. Based on the implementation of front as discussed above, the queue has no space to enqueue
any more elements (as front is (n —3) and the last three elements occupy positions (n — 3) thru (n— 1) - which

is the last position). Such a waste!

— In order to reuse spaces left unoccupied, we implement Queues in a circular fashion using array lists. This

allows us to reclaim these spaces and utilize memory efficiently.

4 Circular Queue data structure

For the circular implementation, we need to manipulate variables to go around the “end” of the array list.

— Enqueue(data) : if(cap! = size):

1. InsertBack : Insert data at index ((front+ size)%cap)
2. Update size : size++

— Dequeue() : if(size! = 0):

1. RemoveFront : Remove data from index front

2. Update front : front = (front + 1)%cap

4.1 Circular Queue : Resizing

We have seen above that enqueue works as long as the queue is not at capacity. How to insert at capacity? Well, we

follow the Resize x2 strategy that was used for array lists.

While copying contents onto the new array list, it is critical to ensure that front gets copied to the first slot of the new list

followed by successive elements as shown below. This ensures localization/continuity of successive elements (partic-

ularly after subsequent enqueue operations).

front
a y m o n d
front
m o n d a Yy

Computer Science - University of Illinois Urbana-Champaign

4.2 Circular Queue : Simulation

Simulation of a queue Q with the following sequence of operations -

a) enqueue(C) b) enqueue(S) c) enqueue(2) d) dequeue()
f) enqueue(4) g) enqueue(8) h) dequeue() i) enqueue(6)
front
3
front
L
C
front
L
C S
front
L
C S 2
front
4
S 2
front
4
2
front
1
2 4
front
1
2 4 8
front
4
4 8
front
4
6 4 8

Fall 2025

e) dequeue()

Computer Science - University of Illinois Urbana-Champaign Fall 2025

4.3 Queue vs Stack

Table 1: Queue vs Stack

Order Implementation Insert/Remove | Random Access
Queue | FIFO | “Circular” Array list X
Stack | LIFO Linked list X

Note : Queues support amortized O(1) for enqueue.

5 Iterators

— Motivation - We have seen how to iterate through array lists or linked lists to access different items stored in a
given list. How do we go about this task if our objects are not “standard”? (for example : vertices of a cube)

— Iterators - Iterators provide a systematic way to access items in a container without exposing the underlying

structure of the container.
— Requirements - For a class to have an iterator, it needs two functions :

— Iterator begin() : first item

— Tterator end() : last item
— The actual iterator is defined as a class inside the outer class:

1. It must be of base class std::iterator.
2. It must implement at least the following operations :
— GetNext : Iterator& operator ++()

— Dereference : Const T& operator® ()

— Compare Objects : bool operator !=(const Iterator&)

	Learning Goals
	Queue - First In First Out
	Implementation

	Queues using array lists
	RemoveFront in O(1) time using array lists
	Circular queue - motivation

	Circular Queue data structure
	Circular Queue : Resizing
	Circular Queue : Simulation
	Queue vs Stack

	Iterators

