Computer Science - University of Illinois Urbana-Champaign

CS 225 - Lecture 5

Learning Goals

— Implement Insert, Random Access and Remove operations

{

Pointers vs reference-to-pointers

— Linked List Insert/Delete runtimes

Insert(data, index)

— Requirement : In order to insert data at position index of

— Previous node (indez - 1) to point at new node with

Fall 2025

Scribe : Harsha Srimath Tirumala

the list, we need:

data

— New node to point to the node originally at position index

Since _index returns a ListNode* &, it is easy to meet both these requirements.

1. Get reference to previous node’s next
2. Create new ListNode
3. Update new ListNode’s next

4. Modify previous node to point to new ListNode

ListNode* &curr = _index(index)
ListNode* tmp = new ListNode(data)
tmp—next = curr

tmp = curr

3

List Random Access |]

minimal set of operations)

— Runtime : O(n)

Design choice - Return type T & supports getValue() as well as setValue()

Runtime : Index (O(n)) + Create new ListNode (O(1)) + Update-next (O(1)) + Modity link (O(1)) = O(n)

Random access helps support operations like querying and modifying data within the list. (It is one of the

Random Access (getValue)

template <typename T>

T & List<I'>::operator [] (unsigned index) {
ListNode *& tmp = _index (index);

return tmp —> data;

Computer Science - University of Illinois Urbana-Champaign

4 Remove

Remove can have three different input parameters :

e Remove by position - Remove(unsigned index)

e Remove a specific node - Remove(ListNode * &)

e Remove by value - Remove(T & data)

— Memory Leaks - To prevent memory leaks, make sure to delete the removed node from memory.

Runtime - O(n)

Runtime - O(1)

Runtime - O(n)

Table 1: Linked list runtimes

@Front | @QRefPointer | @Index
Insert | O(1) o(1) O(n)
Delete | O(1) o(1) O(n)

Fall 2025

	Learning Goals
	Insert(data, index)
	List Random Access []
	Remove

