
Computer Science - University of Illinois Urbana-Champaign Fall 2025

CS 225 - Lecture 4 Scribe : Harsha Srimath Tirumala

1 Learning Goals

↪→ Review fundamentals of Linked lists

↪→ Implement insertatFront and Index operations

↪→ Pointers vs reference-to-pointers

2 Linked Lists

↪→ Access in Linked lists is one-way. (A different implementation of linked lists allows two-way access : Doubly

Linked lists).

↪→ Data is accessed via reference and links via pointers.

↪→ Unless otherwise specified, we will assume our linked lists have n nodes.

3 insertAtFront(data)

1. Create a new ListNode ListNode* tmp = new ListNode(data)

2. Set its next to head tmp→next = head

3. Update head to point to tmp head = tmp

↪→ Runtime : Create-ListNode (O(1)) + Set-next (O(1)) + Update-Head (O(1)) = O(1)

4 index()

↪→ Conceptual - Must return the link to the required index to establish existence of data (being searched). Very

helpful if link leading to said data can be manipulated (eg : for insert/delete at that location)

↪→ Key Idea - Return type ListNode* & allows modification of link to index as well as data in next ListNode.

↪→ Note - Return type ListNode* cannot modify link to index.

↪→ Runtime : O(n) as it involves scanning from head through index one node at a time.

1

Computer Science - University of Illinois Urbana-Champaign Fall 2025

template <typename T>

typename List<T> : : ListNode ∗& List<T> : : index (unsigned index) {
i f (index = = 0) return head ;

e l s e {
ListNode∗ curr = head ;

f o r (unsigned i n t i = 0 ; i < index − 1 ; i++) {
curr = curr −> next ;

}
re turn curr−>next ;

}
}

2

	Learning Goals
	Linked Lists
	insertAtFront(data)
	_index()

