Data Structures and Algorithms

Skip List

CS 225 December 6, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Capstone probability lectures with a literature example — the Skip List!
Review fundamentals of probabilistic data structures with the skip list
Conceptualize Skip List ADT functions

Analyze efficiency of skip list while reviewing fundamentals of probability

The skip list is not on the final exam!

Where it all began... A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.

It turns out this system is also useful as an alternative linked list! How?

An alternative linked list

Goal: Visit nodes in my linked list in, on average, [og n steps

Big Picture: | need a way to access nodes X positions past the head

head_fz (’3 (’-»5 (’—>7 (’—8 (

’->¢

Linked List with ‘Checkpoints’

With some small overhead costs, we can store checkpoints.

head_fz (’3 (’-»5 (’>7 (,

’->¢

Linked List with Perfect Checkpoints

For optimal checkpoints, we want half the number of items at each level.

head @

head (- "

head f 2

0

10

’->¢

10

Linked List with Perfect Checkpoints

For optimal checkpoints, we want half the number of items at each level.

Maintaining this while inserting and deleting is too costly!

10

0

’->¢

10

Linked List with Perfect Checkpoints

For optimal checkpoints, we want half the number of items at each level.

Maintaining this while inserting and deleting is too costly!

10

0

’->¢

10

Linked List with Perfect Checkpoints

For optimal checkpoints, we want half the number of items at each level.

Maintaining this while inserting and deleting is too costly!

'

10

Linked List with Perfect Checkpoints

For optimal checkpoints, we want half the number of items at each level.

Maintaining this while inserting and deleting is too costly!

'

- 9
_ 9
<

¥ .
y . g

10

Linked List with Random Checkpoints

Problem: Having an optimal set of checkpoints is costly to maintain
Solution:

’->¢

head_fz (’3 (’>5 (’—>7 (’8 (

Linked List with Random Checkpoints

Instead of having exactly half each level, let’s have approximately half!

To analyze runtimes we use:

> > @
head ¢ 3
’>¢
head ¢ " 3 g 8 (
_ —
head @ T3 IEAK 3 W s | €

’->¢

head_fz (’3 (’>5 (’-»7 (’8 (

The Skip List

An ordered linked list where each node has variable size

O

Each node has at most one key but an arbitrary number of pointers

The decision for height is randomized

Claim: The average time to find, insert, or remove is log n

elelele

lVVV

—>| 2 |

tlelely

>
—>| 5 | o—>

Ak

>
—
—

Ql’l'

The Skip List

What would a SkipNode class look like? How about the SkipList class?

elelele

lVVV

—>| 2 |

tlelely

>
—>| 5 | o—>

Ak

Vi

Ql’l'

Skip List

1| template <class T>

2| class SkipList{

3 public:

4 class SkipNode({

5 public:

6 SkipNode () {

7 next.push back (nullptr) ;

8 }

9
10 SkipNode (int h, T & d) {
11 data = d;
12 for(int 1 = 0; i <= h; i++) {
13 next.push back (nullptr) ;
14 }

15 }

16 T data;

17 std: : vector<SkipNode*> next;
18 };

19
20 int max; // max height
21 float c; //update constant
22 SkipNode* head;
23
24

Skip List ADT
Find

Insert
Remove

Constructor

Skip List Find

ololole

lVVV

| 2 | o

v

elelele

—>| 5 | *

2 le
vl

ole

viv
0L

VY VY

Find (9)

S 6 6

Skip List Find Find (7)

If key matches, done!

f key smaller than next node’s key, move down a level

f key larger than next node’s key, go to next node at current level

2 le
vl

S 66

VY VY

olelele
vy
o]

anne
¢ Yy vy

ole

—>[2]« —| 5[

Skip List Find Find (1)
If key matches, done!

f key smaller than next node’s key, move down a level

f key larger than next node’s key, go to next node at current level

2 le
vl

S 66

VY VY

olelele
vy
o]

anne
¢ Yy vy

ole

—>[2]« —| 5[

Skip List Find

Could you code up Skip List Find?

ololole

lVVV

| 2 | o

v

elelele

—>| 5 | *

ol

vy

ole

viv
0L

VY VY

S 6 6

Skip List Insert

ololole

‘VVV

| 2 | o

elelele

Insert (6)

>0

»[gTe >0

Exd = -9

_>|5|o o-—> o >0

Skip List Insert Insert (9)

Randomly generate height for insert

Use Find() logic but insert at every list with height >=random

° 2o >0
o S s > o >0
o o e > ol ol Jeo)
ol 2 | o _o-—>| g [o}—> | [e}>]| [e > Q@

Skip List Insert

Randomly generate height for insert

Use Find() logic but insert at every list with height >=random

2 le
vl

olelele
vy
o]

anne
¢ Yy vy

ole

S 66

VY VY

Skip List Insert

Could you code up Skip List Insert?

ololole

lVVV

| 2 | o

v

elelele

—>| 5 | *

ol

vy

ole

viv
0L

VY VY

S 6 6

Skip List Remove

ololole

| 2 | o

lVVV

Remove (9)

v

elelele

—>| 5 | *

2 le
vl

ole

viv
0L

VY VY

S 6 6

Skip List Remove

Use Find() logic but remove before descending the previous node

Remove (3)

The remove is a standard Linked List Remove (but at each level)

ololole

lVVV

| 2 | o

v

elelele

—>| 5 | *

ol

vy

ole

vy
0L

VY VY

S 66

Skip List Remove

Use Find() logic but remove before descending the previous node

Remove (5)

The remove is a standard Linked List Remove (but at each level)

ololole

lVVV

| 2 | o

v

elelele

—>| 5 | *

ol

vy

ole

vy
0L

VY VY

S 66

Skip List Efficiency

We've seen the full ADT but haven't explored the runtime

What is the Big O for Find()?

ololole

¢VVV

—>|2|o-

leTele

>
—>| 5 |

ol

\4

ole

V*V
elele

VY VY

S 6 6 &

Skip List Efficiency
We've seen the full ADT but haven't explored the runtime

What is the Big O for Find()? O(n) for n nodes (keys)

Using probability, how can we show skip list is better than O(n)?

\ 4

N
ole
V‘V
tlele
VYVYY

ol

leTele

¢VVV

ololole

>
—>| 5 |

—>|2|o-

S 6 6 &

Skip List Efficiency @

We've seen the full ADT but haven't explored the runtime
What is the Big O for Find()? O(n) for n nodes (keys)

Using probability, how can we show skip list is better than O(n)?
1) Formalize the probability of SkipList reaching height 4 > log n

2) Define a recurrence relationship for search path

3) Use (1) and (2) to show that our average search timeis log n

>
>
>

\ 4

N
vlele
VY VY

ole

S 6 6 &

leTele

¢VVV

ololole

ol

>
—>| 5 |

—>|2|o-

Skip List Random Height

By definition, each increase in height occurs with probability c.

If c = 0.5 (a coin flip), to reach level [, we must flip [heads in a row

By definition the probability a node reaching level [is c!

template <class T>
int SkipList<T>::randHeight () {
float frac = rand()/(float)RAND MAX;

int h = 0;
while (frac < c){
h++;

frac = rand()/(float) RAND MAX;
}

return h;

}

OooJdJoouldkd WDNBE

Skip List Expectation

We want to bound the height of a SkipList of n nodes but this is
deceptively hard to prove in expectation:

E[h] =) E[] I =

1 if [th level contains a node
O if Ith level contains no nodes

[log n] [log n] 00

E[hl =) E[]+ Z E[l] ~ Z L+) %
[=0

I=[log n|+1 I=[log n|+1

Skip List Average-Case Performance

Instead we will define an equation for the likelihood of SkipList of 7 nodes
having a height larger than log n and claim that the probability is small.

With a probability ¢ of increasing a node’s height by 1:

Probability a single node reaches level [:

Skip List Average-Case Performance

Instead we will define an equation for the likelihood of SkipList of 7 nodes
having a height larger than log n and claim that the probability is small.

With a probability ¢ of increasing a node’s height by 1:

Probability a single node reaches level [: ¢!

Probability a single node does not reach level I:

Skip List Average-Case Performance

Instead we will define an equation for the likelihood of SkipList of 7 nodes
having a height larger than log n and claim that the probability is small.

With a probability ¢ of increasing a node’s height by 1:

Probability a single node reaches level [: ¢!

Probability a single node does notreach level I: 1 — ¢!

Probability n nodes do not reach level [:

Skip List Average-Case Performance

Instead we will define an equation for the likelihood of SkipList of 7 nodes
having a height larger than log n and claim that the probability is small.

With a probability ¢ of increasing a node’s height by 1:

Probability a single node reaches level [: ¢!

Probability a single node does notreach level I: 1 — ¢!

Probability n nodes do not reach level [: (1 — cl)”

Skip List Average-Case Performance

Instead we will define an equation for the likelihood of SkipList of 7 nodes
having a height larger than log n and claim that the probability is small.

Probability n nodes do not reach level I: (1 — cl)n

Probability at least one node reaches level [:

Skip List Average-Case Performance

Instead we will define an equation for the likelihood of SkipList of 7 nodes
having a height larger than log n and claim that the probability is small.

Probability n nodes do not reach level I: (1 — cl)n

Probability at least one node reaches level [: 1 — (1 — cl)”

Using this equation, the probability of exceeding height A is: ne”

Skip List height is unbounded, but we control probability!

Skip List Average-Case Performance @

To quote the original 1990 skipList paper:

“Don’t worry, be happy. Simply start a search at the highest level present in
the list. As we will see in our analysis, the probability that the maximum
level in a list of n elements is significantly larger than L(n) is very small.”

The authors use this logic to state L(n) = log,,. n as the optimal (or
expected) max height.

William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33, 6 (June 1990), 668-676.

Skip List Expectation

Claim: Expected length of search of skip list is the height ~ (log n)

Proof: Direct with recurrence equation working backwards

olelele
¢ Yy VY
olelele
2l
viv
0K
vVYVY

_>|2|.. —}lsl. >

S S 6 &

Skip List Expectation

Claim: Expected length of search of skip list is the height ~ (log n)

Proof: Direct with recurrence equation working backwards

Let H(k) be the expected cost to search a path of k levels
ThenHk)=14+(1—-¢c)*Hk)+c*Hk—-1)

olelele
¢ Yy VY
olelele
viv
0K
vVYVY

ole

_>|2|.. —>|5|. >

S S 6 &

Skip List Expectation

Claim: Expected length of search of skip list is the height ~ (log n)

Proof: Direct with recurrence equation working backwards
Let H(k) be the expected cost to search a path of k levels
ThenHk) =14+ —-c)*Hk)+c*Hk-1)

Rewrite: H(k) — (1 —c)*H(k) =14+ c*H(k—1)

olelele
¢ Yy VY
olelele
2l
viv
0K
vVYVY

—>| 5 |

—>|2|0-

S S 6 &

Skip List Expectation

Claim: Expected length of search of skip list is the height ~ (log n)

Proof: Direct with recurrence equation working backwards

Let H(k) be the expected cost to search a path of k levels
Rewrite: Hk) — (1 —c)*H(k)=14+c*Hk —1)

Rewrite:

olelele
¢ Yy VY
olelele
ole

2l
viv
0K
vVYVY

—>| 5 |

—>|2|0-

S S 6 &

Skip List Expectation

Claim: Expected length of search of skip list is the height ~ (log n)
Proof: Direct with recurrence equation working backwards

Let H(k) be the expected cost to search a path of k levels

Rewrite: H(k) — (1 —c)*H(k) =14+ c*H(k—1)
Rewrite:c*H(k) =14+ c*Hk—-1)=Hk)=1/c+ Hk—-1)
Trivial Soln: k/c

elelele
VY VY

eI

>
-
>

anne
¢ Yy vy

ole

—>| 5 |

—>|2|0-

S S 6 &

Skip List Efficiency

O

We've seen the full ADT but haven't explored the runtime

What is the Big O for Find()? O(n) for n nodes (keys)

Skip List mimics behavior of AVL Tree, despite being linked list
1) Our height is (on average) log n

2) The expected cost to traverse is height bounded!

3) So our average search time is log n

TABLE Il. Timings of Implementations of Different Algorithms

Implementation

Search Time

Insertion Time

Deletion Time

Skip lists
non-recursive AVL trees
recursive 2-3 trees
Self-adjusting trees:
top-down splaying
bottom-up splaying

0.051 msec(1.0)
0.046 msec(0.91)
0.054 msec(1.05)

0.15 msec (3.0)
0.49 msec (9.6)

0.065 msec(1.0)
0.10 msec (1.55)
0.21 msec (3.2)

0.16 msec (2.5)
0.51 msec (7.8)

0.059 msec(1.0)
0.085 msec(1.46)
0.21 msec (3.65)

0.18 msec (3.1)
0.53 msec (9.0)

In Conclusion

If interested, read the original publication!

William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (June 1990), 668-676.

https://doi.org/10.1145/78973.78977

If not, hopefully you learned a few things about probability in CS!

