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Skip List



Learning Objectives

Conceptualize Skip List ADT functions

Analyze efficiency of skip list while reviewing fundamentals of probability

Review fundamentals of probabilistic data structures with the skip list

Capstone probability lectures with a literature example — the Skip List!

The skip list is not on the final exam!



Where it all began… A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.

It turns out this system is also useful as an alternative linked list! How?



An alternative linked list
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Goal: Visit nodes in my linked list in, on average,  stepslog n
Big Picture: I need a way to access nodes X positions past the head



Linked List with ‘Checkpoints’
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With some small overhead costs, we can store checkpoints.



Linked List with Perfect Checkpoints
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For optimal checkpoints, we want half the number of items at each level.
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Linked List with Perfect Checkpoints
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Maintaining this while inserting and deleting is too costly!
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Linked List with Perfect Checkpoints
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Linked List with Perfect Checkpoints
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2 3 5 7 8
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Linked List with Random Checkpoints
Problem: Having an optimal set of checkpoints is costly to maintain

Solution:
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Linked List with Random Checkpoints
Instead of having exactly half each level, let’s have approximately half!

To analyze runtimes we use: ____________________



The Skip List
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An ordered linked list where each node has variable size

Claim: The average time to find, insert, or remove is log n

Each node has at most one key but an arbitrary number of pointers

The decision for height is randomized



The Skip List
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What would a SkipNode class look like? How about the SkipList class? 



Skip List
template <class T> 
class SkipList{ 
  public:  
    class SkipNode{ 
      public: 
        SkipNode(){ 
          next.push_back(nullptr); 
        } 

        SkipNode(int h, T & d){ 
          data = d; 
          for(int i = 0; i <= h; i++){ 
            next.push_back(nullptr); 
          } 
        } 
        T data; 
        std::vector<SkipNode*> next; 
    }; 

    int max; // max height 
    float c; //update constant 
    SkipNode* head; 
    ... 
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Skip List ADT
Find

Insert

Remove

Constructor



Skip List Find
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Find(9)



Skip List Find
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Find(7)
If key matches, done!

If key smaller than next node’s key, move down a level

If key larger than next node’s key, go to next node at current level



Skip List Find
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Find(1)
If key matches, done!

If key smaller than next node’s key, move down a level

If key larger than next node’s key, go to next node at current level



Skip List Find
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Could you code up Skip List Find?



Skip List Insert
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Skip List Insert
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Insert(9)
Randomly generate height for insert

Use Find() logic but insert at every list with height >= random



Skip List Insert
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Randomly generate height for insert

Use Find() logic but insert at every list with height >= random



Skip List Insert
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Could you code up Skip List Insert?



Skip List Remove
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Remove(9)



Skip List Remove
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Remove(3)
Use Find() logic but remove before descending the previous node

The remove is a standard Linked List Remove (but at each level)



Skip List Remove
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Remove(5)
Use Find() logic but remove before descending the previous node

The remove is a standard Linked List Remove (but at each level)



Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime
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What is the Big O for Find()?



Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime
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What is the Big O for Find()?

Using probability, how can we show skip list is better than ?O(n)

 for  nodes (keys)O(n) n



Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime
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What is the Big O for Find()?  for  nodes (keys)O(n) n

1) Formalize the probability of SkipList reaching height h > log n
2) Define a recurrence relationship for search path

3) Use (1) and (2) to show that our average search time is log n

Using probability, how can we show skip list is better than ?O(n)



Skip List Random Height
By definition, each increase in height occurs with probability .c

By definition the probability a node reaching level  is l cl

If  (a coin flip), to reach level , we must flip  heads in a rowc = 0.5 l l

template <class T> 
int SkipList<T>::randHeight(){ 
  float frac = rand()/(float)RAND_MAX; 
  int h = 0; 
  while(frac < c){ 
    h++; 
    frac = rand()/(float)RAND_MAX; 
  } 
  return h; 
} 
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Skip List Expectation
We want to bound the height of a SkipList of  nodes but this is 
deceptively hard to prove in expectation:

n

E[h] =
∞

∑
l=0

E[Il] Il = {
1 if lth level contains a node

0 if lth level contains no nodes

E[h] =
⌈log n⌉

∑
l=0

E[Il] +
∞

∑
l=⌈log n⌉+1

E[Il] ≈
⌈log n⌉

∑
l=0

1 +
∞

∑
l=⌈log n⌉+1

n
2l



Skip List Average-Case Performance
Instead we will define an equation for the likelihood of SkipList of  nodes 
having a height larger than  and claim that the probability is small.

n
log n

Probability a single node reaches level :l

With a probability  of increasing a node’s height by 1:c



Skip List Average-Case Performance

Probability a single node reaches level :l cl

Probability a single node does not reach level :l

Instead we will define an equation for the likelihood of SkipList of  nodes 
having a height larger than  and claim that the probability is small.

n
log n

With a probability  of increasing a node’s height by 1:c



Skip List Average-Case Performance

Probability a single node reaches level :l cl

Probability a single node does not reach level :l 1 − cl

Probability  nodes do not reach level :n l

Instead we will define an equation for the likelihood of SkipList of  nodes 
having a height larger than  and claim that the probability is small.

n
log n

With a probability  of increasing a node’s height by 1:c



Skip List Average-Case Performance

Probability a single node reaches level :l cl

Probability a single node does not reach level :l 1 − cl

Probability  nodes do not reach level :n l (1 − cl)n

Instead we will define an equation for the likelihood of SkipList of  nodes 
having a height larger than  and claim that the probability is small.

n
log n

With a probability  of increasing a node’s height by 1:c



Skip List Average-Case Performance

Probability  nodes do not reach level :n l (1 − cl)n

Probability at least one node reaches level :l

Instead we will define an equation for the likelihood of SkipList of  nodes 
having a height larger than  and claim that the probability is small.

n
log n



Skip List Average-Case Performance

Probability  nodes do not reach level :n l (1 − cl)n

Probability at least one node reaches level :l 1 − (1 − cl)n

Instead we will define an equation for the likelihood of SkipList of  nodes 
having a height larger than  and claim that the probability is small.

n
log n

Using this equation, the probability of exceeding height  is:  h nch

Skip List height is unbounded, but we control probability!



Skip List Average-Case Performance

“Don’t worry, be happy. Simply start a search at the highest level present in 
the list. As we will see in our analysis, the probability that the maximum 
level in a list of n elements is significantly larger than L(n) is very small.”

To quote the original 1990 skipList paper:

The authors use this logic to state  as the optimal (or 
expected) max height.

L(n) = log1/c n

William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33, 6 (June 1990), 668–676.



Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)
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Proof: Direct with recurrence equation working backwards



Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)
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Proof: Direct with recurrence equation working backwards

Let  be the expected cost to search a path of  levelsH(k) k

Then H(k) = 1 + (1 − c) * H(k) + c * H(k − 1)



Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)
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Proof: Direct with recurrence equation working backwards

Let  be the expected cost to search a path of  levelsH(k) k

Then H(k) = 1 + (1 − c) * H(k) + c * H(k − 1)
Rewrite: H(k) − (1 − c) * H(k) = 1 + c * H(k − 1)



Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)
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Proof: Direct with recurrence equation working backwards

Let  be the expected cost to search a path of  levelsH(k) k

Rewrite: H(k) − (1 − c) * H(k) = 1 + c * H(k − 1)
Rewrite:



Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)
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Proof: Direct with recurrence equation working backwards

Let  be the expected cost to search a path of  levelsH(k) k

Rewrite: H(k) − (1 − c) * H(k) = 1 + c * H(k − 1)
Rewrite: c * H(k) = 1 + c * H(k − 1) = H(k) = 1/c + H(k − 1)
Trivial Soln: k /c



Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime

What is the Big O for Find()?  for  nodes (keys)O(n) n

1) Our height is (on average) log n
2) The expected cost to traverse is height bounded!

3) So our average search time is log n

Skip List mimics behavior of AVL Tree, despite being linked list

much slower than the results presented. The self- 
adjusting tree algorithms are based on those presented 
in [ll]. The times in this table reflect the CPU time on 
a Sun-3/60 to perform an operation in a data structure 
containing 2l” elements with integer keys. The values 
in parenthesis show the results relative to the skip list 
times. The times for insertion and deletion do not in- 
clude the time for memory management (e.g, in C pro- 
grams, calls to malloc and free). 

It should be noted that skip lists perform more com- 
parisons than other methods (the skip list algorithms 
presented here require an average of L(n)/p + l/(1 - p) 
+ 1 comparisons). For tests using real numbers as keys, 
skip lists were slightly slower than the nonrecursive 
AVL tree algorithms and search in a skip list was 
slightly slower than search in a 2-3 tree (insertion and 
deletion using the skip-list algorithms was still faster 
than using the recursive 2-3 tree algorithms). If com- 
parisons are very expensive, it is possible to change the 
algorithms so that we never compare the search key 
against the key of a node more than once during a 
search. For p = %, this produces an upper bound on the 
expected number of comparisons of % + % log,n. This 
modification is discussed in [8]. 

Type of Performance Bound 
These three classes of algorithm have different kinds of 
performance bounds. Balanced trees have worst-case 
time bounds, self-adjusting trees have amortized time 
bounds and skip lists have probabilistic time bounds. 
With self-adjusting trees, an individual operation can 
take O(n) time, but the time bound always holds over a 
long sequence of operations. For skip lists, any opera- 
tion or sequence of operations can take longer than 
expected, although the probability of any operation tak- 
ing significantly longer than expected is negligible. 

In certain real-time applications, we must be sure 
that an operation will be completed within a certain 
time bound. For such applications, self-adjusting trees 
may be undesirable, since they can take significantly 
longer on an individual operation than expected (e.g., 
an individual search can take O(n) time instead of 
O(log n) time). For real-time systems, skip lists may be 
usable if an adequate safety margin is provided: the 
chance that a search in a skip list containing 1000 ele- 
ments takes more than five-times the expected time is 
about 1 in 10”. 

Articles 

Non-Uniformed Query Distributions 
Self-adjusting trees have the property that they adjust 
to nonuniform query distributions. Since skip lists are 
faster than self-adjusting trees by a significant constant 
factor when a uniform query distribution is encoun- 
tered, self-adjusting trees are faster than skip lists only 
for highly skewed distributions. We could attempt to 
devise self-adjusting skip lists. However, there seems 
little practical motivation to tamper with the simplicity 
and fast performance of skip lists; in an application 
where highly skewed distributions are expected, either 
self-adjusting trees or a skip list augmented by a cache 
may be preferable [g]. 

ADDITIONAL WORK ON SKIP LISTS 
I have described a set of algorithms that allow multiple 
processors to concurrently update a skip list in shared 
memory [i’]. These algorithms are much simpler than 
concurrent balanced tree algorithms. They allow an un- 
limited number of readers and n busy writers in a skip 
list of n elements with very little lock contention. 

Using skip lists, makes it easy to perform the kinds of 
operations you might wish to do with a balanced tree 
such as use search fingers, merge skip lists and allow 
ranking operations (e.g., determine the kth element of a 
skip list [8]). 

Tom Papadakis, Ian Munro and Patricia Poblette [6] 
have done an exact analysis of the expected search 
time in a skip list. The upper bound described in this 
paper is close to their exact bound; the techniques they 
needed to use to derive an exact analysis are very com- 
plicated and sophisticated. Their exact analysis shows 
that for p = 1% and p = l/4. the upper bound given in this 
article on the expected cost of a search does not exceed 
two comparisons more than the exact expected cost. 

I have adapted the idea of probabilistic balancing to 
some other problems arising both in data structures and 
in incremental computation [lo]. We can generate the 
level of a node based on the result of applying a hash 
function to the element (as opposed to using a random 
number generator). This results in a scheme where for 
any set S, there is a unique data structure that repre- 
sents S and with high probability the data structure is 
approximately balanced. If we combine this idea with 
an applicative (i.e., persistent) probabilistically balanced 
data structure and a scheme such as hashed-consing [2] 
that allows constant-time structural equality tests of ap- 

Implementation 
Skip lists 

non-recursive AVL trees 
recursive 2-3 trees 

Self-adjusting trees: 
top-down splaying 

bottom-up splaying 

TABLE II. Timings of Implementations of Different Algorithms 

Search Time Insertion Time 
0.051 msec(1 .O) 0.065 msec(l.0) 
0.046 msec(0.91) 0.10 msec (1.55) 
0.054 msec(l.05) 0.21 msec (3.2) 

0.15 msec (3.0) 
0.49 msec (9.6) 

0.16 msec (2.5) 
0.51 msec (7.8) 

Deletion Time 
0.059 msec(l.0) 
0.085 msec(1.46) 
0.21 msec (3.65) 

0.18 msec (3.1) 
0.53 msec (9.0) 

June 1990 Volume 33 Number 6 Communications of the ACM 675 



In Conclusion
If interested, read the original publication!

William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees. 
Commun. ACM 33, 6 (June 1990), 668–676.

https://doi.org/10.1145/78973.78977

If not, hopefully you learned a few things about probability in CS!


