
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

December 6, 2024

Skip List

Learning Objectives

Conceptualize Skip List ADT functions

Analyze efficiency of skip list while reviewing fundamentals of probability

Review fundamentals of probabilistic data structures with the skip list

Capstone probability lectures with a literature example — the Skip List!

The skip list is not on the final exam!

Where it all began… A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.

It turns out this system is also useful as an alternative linked list! How?

An alternative linked list

2 3 5 7 8
Ø

head_

Goal: Visit nodes in my linked list in, on average, stepslog n
Big Picture: I need a way to access nodes X positions past the head

Linked List with ‘Checkpoints’

2 3 5 7 8
Ø

head_

With some small overhead costs, we can store checkpoints.

Linked List with Perfect Checkpoints

2 3 5 9 10
Ø

head_

2 5 10

5

For optimal checkpoints, we want half the number of items at each level.

head_

head_

Ø

Ø

Linked List with Perfect Checkpoints

5 10
Ø

5 10

5

For optimal checkpoints, we want half the number of items at each level.

Ø

Ø

Maintaining this while inserting and deleting is too costly!

7

Linked List with Perfect Checkpoints

5 10
Ø

5

5

For optimal checkpoints, we want half the number of items at each level.

Ø

Ø

Maintaining this while inserting and deleting is too costly!

6 7

10
Ø

Linked List with Perfect Checkpoints

5 10
Ø

5

5

For optimal checkpoints, we want half the number of items at each level.

Ø

Ø

Maintaining this while inserting and deleting is too costly!

6 7 8

7

Linked List with Perfect Checkpoints

5 109
Ø

5 9

5

For optimal checkpoints, we want half the number of items at each level.

Ø

Ø

Maintaining this while inserting and deleting is too costly!

6 7 8

7

2 3 5 7 8
Ø

head_

Linked List with Random Checkpoints
Problem: Having an optimal set of checkpoints is costly to maintain

Solution:

2 3 5 7 8
Ø

head_

73head_ 8
Ø

3head_ 8
Ø

3head_
Ø

Linked List with Random Checkpoints
Instead of having exactly half each level, let’s have approximately half!

To analyze runtimes we use: ____________________

The Skip List

7
2

8

5

3

Ø
Ø
Ø
Ø

An ordered linked list where each node has variable size

Claim: The average time to find, insert, or remove is log n

Each node has at most one key but an arbitrary number of pointers

The decision for height is randomized

The Skip List

7
2

8

5

3

Ø
Ø
Ø
Ø

What would a SkipNode class look like? How about the SkipList class?

Skip List
template <class T>
class SkipList{
 public:
 class SkipNode{
 public:
 SkipNode(){
 next.push_back(nullptr);
 }

 SkipNode(int h, T & d){
 data = d;
 for(int i = 0; i <= h; i++){
 next.push_back(nullptr);
 }
 }
 T data;
 std::vector<SkipNode*> next;
 };

 int max; // max height
 float c; //update constant
 SkipNode* head;
 ...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Skip List ADT
Find

Insert

Remove

Constructor

Skip List Find

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Find(9)

Skip List Find

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Find(7)
Starting at top level… if next node’s key matches, done!

If key smaller than next node’s key, move down a level

If key larger than next node’s key, go to next node at current level

Skip List Find

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Find(1)
Starting at top level… if next node’s key matches, done!

If key smaller than next node’s key, move down a level

If key larger than next node’s key, go to next node at current level

Skip List Find

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Could you code up Skip List Find?

Skip List Insert

7
2

8

5

3

Ø
Ø
Ø
Ø

Insert(6)

Skip List Insert

7
2

8

5

3

Ø
Ø
Ø
Ø

6

Insert(9)
Randomly generate height for insert

Use Find() logic but insert at every list with height >= random

Skip List Insert

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Randomly generate height for insert

Use Find() logic but insert at every list with height >= random

Skip List Insert

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Could you code up Skip List Insert?

Skip List Remove

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Remove(9)

Skip List Remove

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Remove(3)
Use Find() logic but remove before descending the previous node

The remove is a standard Linked List Remove (but at each level)

Skip List Remove

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Remove(5)
Use Find() logic but remove before descending the previous node

The remove is a standard Linked List Remove (but at each level)

Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

What is the Big O for Find()?

Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

What is the Big O for Find()?

Using probability, how can we show skip list is better than ?O(n)

 for nodes (keys)O(n) n

Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

What is the Big O for Find()? for nodes (keys)O(n) n

1) Formalize the probability of SkipList reaching height h > log n
2) Define a recurrence relationship for search path

3) Use (1) and (2) to show that our average search time is log n

Using probability, how can we show skip list is better than ?O(n)

Skip List Random Height
We want half the number of items (approximately) at each level.

How can we do this?

Skip List Random Height
By definition, each increase in height occurs with probability .c

By definition the probability a node reaching level is l cl

If (a coin flip), to reach level , we must flip heads in a rowc = 0.5 l l

template <class T>
int SkipList<T>::randHeight(){
 float frac = rand()/(float)RAND_MAX;
 int h = 0;
 while(frac < c){
 h++;
 frac = rand()/(float)RAND_MAX;
 }
 return h;
}

1
2
3
4
5
6
7
8
9

Skip List Expectation
We want to bound the height of a SkipList of nodes but this is
deceptively hard to prove in expectation:

n

E[h] =
∞

∑
l=0

E[Il] Il = {
1 if lth level contains a node

0 if lth level contains no nodes

E[h] =
⌈log n⌉

∑
l=0

E[Il] +
∞

∑
l=⌈log n⌉+1

E[Il] ≈
⌈log n⌉

∑
l=0

1 +
∞

∑
l=⌈log n⌉+1

n
2l

Skip List Average-Case Performance
Instead we will define an equation for the likelihood of SkipList of nodes
having a height larger than and claim that the probability is small.

n
log n

Probability a single node reaches level :l

With a probability of increasing a node’s height by 1:c

Skip List Average-Case Performance

Probability a single node reaches level :l cl

Probability a single node does not reach level :l

Instead we will define an equation for the likelihood of SkipList of nodes
having a height larger than and claim that the probability is small.

n
log n

With a probability of increasing a node’s height by 1:c

Skip List Average-Case Performance

Probability a single node reaches level :l cl

Probability a single node does not reach level :l 1 − cl

Probability nodes do not reach level :n l

Instead we will define an equation for the likelihood of SkipList of nodes
having a height larger than and claim that the probability is small.

n
log n

With a probability of increasing a node’s height by 1:c

Skip List Average-Case Performance

Probability a single node reaches level :l cl

Probability a single node does not reach level :l 1 − cl

Probability nodes do not reach level :n l (1 − cl)n

Instead we will define an equation for the likelihood of SkipList of nodes
having a height larger than and claim that the probability is small.

n
log n

With a probability of increasing a node’s height by 1:c

Skip List Average-Case Performance

Probability nodes do not reach level :n l (1 − cl)n

Probability at least one node reaches level :l

Instead we will define an equation for the likelihood of SkipList of nodes
having a height larger than and claim that the probability is small.

n
log n

Skip List Average-Case Performance

Probability nodes do not reach level :n l (1 − cl)n

Probability at least one node reaches level :l 1 − (1 − cl)n

Instead we will define an equation for the likelihood of SkipList of nodes
having a height larger than and claim that the probability is small.

n
log n

Using this equation, the probability of exceeding height is: h nch

Skip List height is unbounded, but we control probability!

Skip List Average-Case Performance

“Don’t worry, be happy. Simply start a search at the highest level present in
the list. As we will see in our analysis, the probability that the maximum
level in a list of n elements is significantly larger than L(n) is very small.”

To quote the original 1990 skipList paper:

The authors use this logic to state as the optimal (or
expected) max height.

L(n) = log1/c n

William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33, 6 (June 1990), 668–676.

Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Proof: Direct with recurrence equation working backwards

Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Proof: Direct with recurrence equation working backwards

Let be the expected cost to search a path of levelsH(k) k

Then H(k) = 1 + (1 − c) * H(k) + c * H(k − 1)

Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Proof: Direct with recurrence equation working backwards

Let be the expected cost to search a path of levelsH(k) k

Then H(k) = 1 + (1 − c) * H(k) + c * H(k − 1)
Rewrite: H(k) − (1 − c) * H(k) = 1 + c * H(k − 1)

Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Proof: Direct with recurrence equation working backwards

Let be the expected cost to search a path of levelsH(k) k

Rewrite: H(k) − (1 − c) * H(k) = 1 + c * H(k − 1)
Rewrite:

Skip List Expectation
Claim: Expected length of search of skip list is the height ≈ (log n)

7
2

8

5

3

Ø
Ø
Ø
Ø

6

9

Proof: Direct with recurrence equation working backwards

Let be the expected cost to search a path of levelsH(k) k

Rewrite: H(k) − (1 − c) * H(k) = 1 + c * H(k − 1)
Rewrite: c * H(k) = 1 + c * H(k − 1) = H(k) = 1/c + H(k − 1)
Trivial Soln: k /c

Skip List Efficiency
We’ve seen the full ADT but haven’t explored the runtime

What is the Big O for Find()? for nodes (keys)O(n) n

1) Our height is (on average) log n
2) The expected cost to traverse is height bounded!

3) So our average search time is log n

Skip List mimics behavior of AVL Tree, despite being linked list

much slower than the results presented. The self-
adjusting tree algorithms are based on those presented
in [ll]. The times in this table reflect the CPU time on
a Sun-3/60 to perform an operation in a data structure
containing 2l” elements with integer keys. The values
in parenthesis show the results relative to the skip list
times. The times for insertion and deletion do not in-
clude the time for memory management (e.g, in C pro-
grams, calls to malloc and free).

It should be noted that skip lists perform more com-
parisons than other methods (the skip list algorithms
presented here require an average of L(n)/p + l/(1 - p)
+ 1 comparisons). For tests using real numbers as keys,
skip lists were slightly slower than the nonrecursive
AVL tree algorithms and search in a skip list was
slightly slower than search in a 2-3 tree (insertion and
deletion using the skip-list algorithms was still faster
than using the recursive 2-3 tree algorithms). If com-
parisons are very expensive, it is possible to change the
algorithms so that we never compare the search key
against the key of a node more than once during a
search. For p = %, this produces an upper bound on the
expected number of comparisons of % + % log,n. This
modification is discussed in [8].

Type of Performance Bound
These three classes of algorithm have different kinds of
performance bounds. Balanced trees have worst-case
time bounds, self-adjusting trees have amortized time
bounds and skip lists have probabilistic time bounds.
With self-adjusting trees, an individual operation can
take O(n) time, but the time bound always holds over a
long sequence of operations. For skip lists, any opera-
tion or sequence of operations can take longer than
expected, although the probability of any operation tak-
ing significantly longer than expected is negligible.

In certain real-time applications, we must be sure
that an operation will be completed within a certain
time bound. For such applications, self-adjusting trees
may be undesirable, since they can take significantly
longer on an individual operation than expected (e.g.,
an individual search can take O(n) time instead of
O(log n) time). For real-time systems, skip lists may be
usable if an adequate safety margin is provided: the
chance that a search in a skip list containing 1000 ele-
ments takes more than five-times the expected time is
about 1 in 10”.

Articles

Non-Uniformed Query Distributions
Self-adjusting trees have the property that they adjust
to nonuniform query distributions. Since skip lists are
faster than self-adjusting trees by a significant constant
factor when a uniform query distribution is encoun-
tered, self-adjusting trees are faster than skip lists only
for highly skewed distributions. We could attempt to
devise self-adjusting skip lists. However, there seems
little practical motivation to tamper with the simplicity
and fast performance of skip lists; in an application
where highly skewed distributions are expected, either
self-adjusting trees or a skip list augmented by a cache
may be preferable [g].

ADDITIONAL WORK ON SKIP LISTS
I have described a set of algorithms that allow multiple
processors to concurrently update a skip list in shared
memory [i’]. These algorithms are much simpler than
concurrent balanced tree algorithms. They allow an un-
limited number of readers and n busy writers in a skip
list of n elements with very little lock contention.

Using skip lists, makes it easy to perform the kinds of
operations you might wish to do with a balanced tree
such as use search fingers, merge skip lists and allow
ranking operations (e.g., determine the kth element of a
skip list [8]).

Tom Papadakis, Ian Munro and Patricia Poblette [6]
have done an exact analysis of the expected search
time in a skip list. The upper bound described in this
paper is close to their exact bound; the techniques they
needed to use to derive an exact analysis are very com-
plicated and sophisticated. Their exact analysis shows
that for p = 1% and p = l/4. the upper bound given in this
article on the expected cost of a search does not exceed
two comparisons more than the exact expected cost.

I have adapted the idea of probabilistic balancing to
some other problems arising both in data structures and
in incremental computation [lo]. We can generate the
level of a node based on the result of applying a hash
function to the element (as opposed to using a random
number generator). This results in a scheme where for
any set S, there is a unique data structure that repre-
sents S and with high probability the data structure is
approximately balanced. If we combine this idea with
an applicative (i.e., persistent) probabilistically balanced
data structure and a scheme such as hashed-consing [2]
that allows constant-time structural equality tests of ap-

Implementation
Skip lists

non-recursive AVL trees
recursive 2-3 trees

Self-adjusting trees:
top-down splaying

bottom-up splaying

TABLE II. Timings of Implementations of Different Algorithms

Search Time Insertion Time
0.051 msec(1 .O) 0.065 msec(l.0)
0.046 msec(0.91) 0.10 msec (1.55)
0.054 msec(l.05) 0.21 msec (3.2)

0.15 msec (3.0)
0.49 msec (9.6)

0.16 msec (2.5)
0.51 msec (7.8)

Deletion Time
0.059 msec(l.0)
0.085 msec(1.46)
0.21 msec (3.65)

0.18 msec (3.1)
0.53 msec (9.0)

June 1990 Volume 33 Number 6 Communications of the ACM 675

In Conclusion
If interested, read the original publication!

William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (June 1990), 668–676.

https://doi.org/10.1145/78973.78977

If not, hopefully you learned a few things about probability in CS!

