Data Structures and Algorithms MinHash Sketch

CS 225 Brad Solomon December 4, 2024

Department of Computer Science

Learning Objectives

Review the concept of cardinality and cardinality estimation

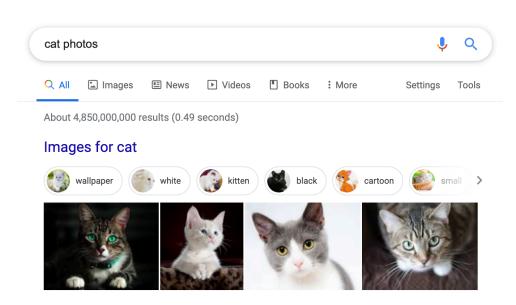
Improve our cardinality estimation approach

Demonstrate the relationship between cardinality and similarity

Introduce the MinHash Sketch for set similarity detection

Cardinality

Sometimes its not possible or realistic to count all objects!



Estimate: 60 billion — 130 trillion

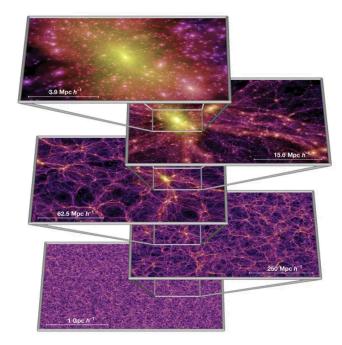


Image: https://doi.org/10.1038/nature03597

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399
6925
2660
2314

Cardinality Estimation

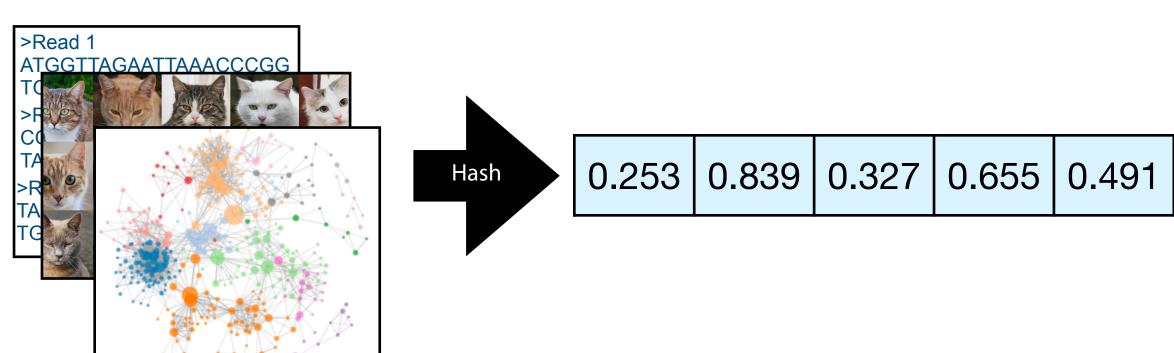
Let min = 95. Can we estimate N, the cardinality of the set?

Conceptually: If we scatter N points randomly across the interval, we end up with N+1 partitions, each about 1000/(N+1) long

Assuming our first 'partition' is about average: $95 \approx 1000/(N+1)$ $N+1 \approx 10.5$ $N \approx 9.5$

Cardinality Sketch

Given any dataset and a SUHA hash function, we can **estimate the number of unique items** by tracking the **k-th minimum hash value**.



Applied Cardinalities

Cardinalities

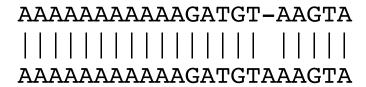
$$|A|$$
 $|B|$
 $|A \cup B|$
 $|A \cap B|$

Set similarities

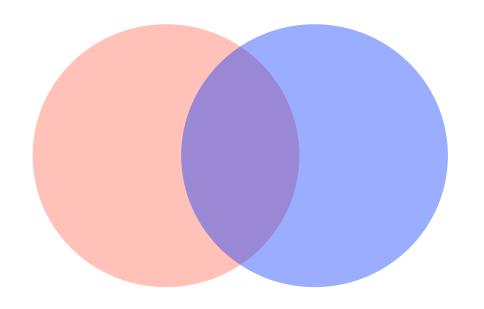
$$O = \frac{|A \cap B|}{\min(|A|, |B|)}$$

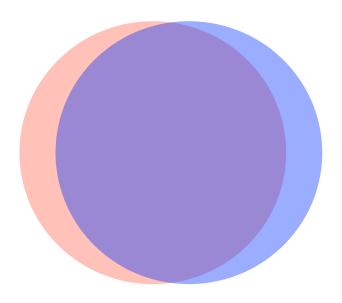
$$J = \frac{|A \cap B|}{|A \cup B|}$$

Real-world Meaning

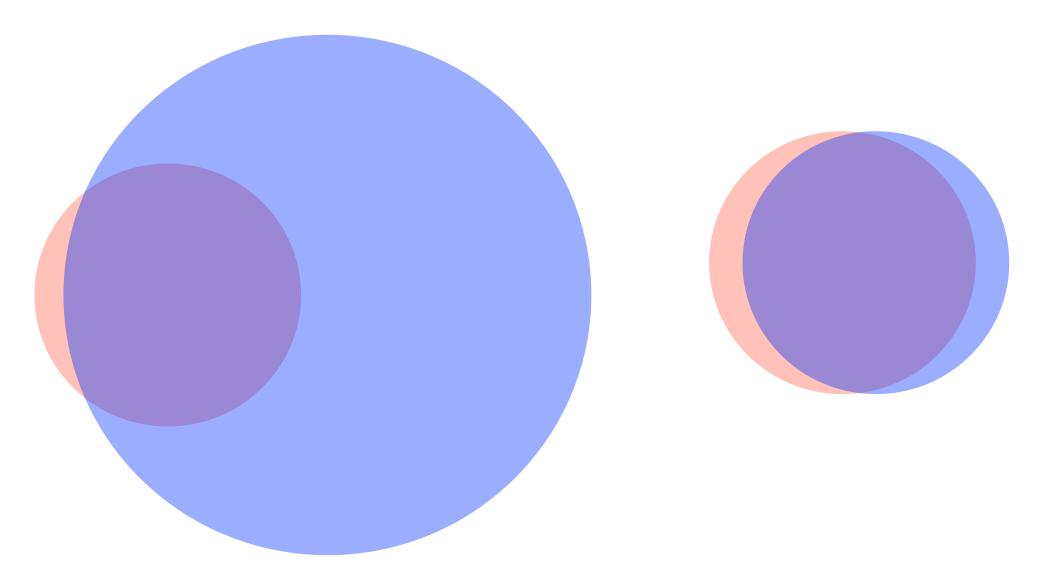


How can we describe how *similar* two sets are?

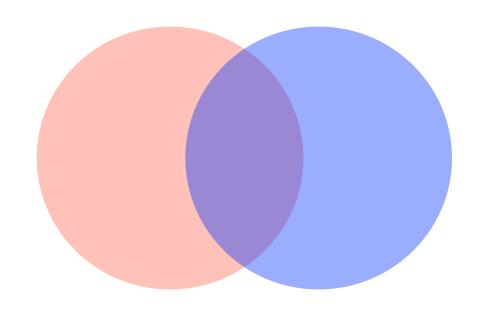




How can we describe how *similar* two sets are?

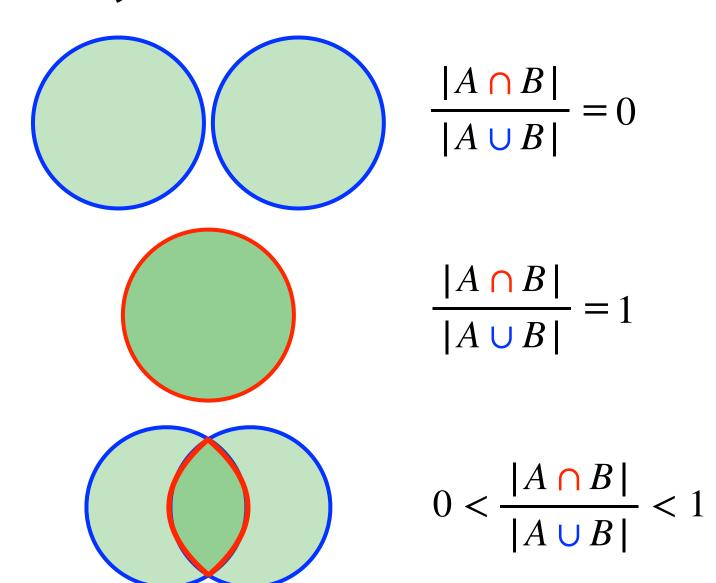


To measure **similarity** of A & B, we need both a measure of how similar the sets are but also the total size of both sets.



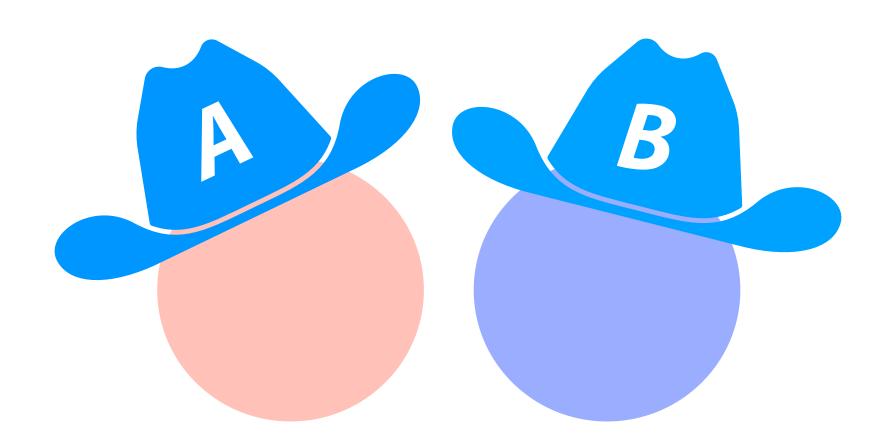
$$J = \frac{|A \cap B|}{|A \cup B|}$$

J is the **Jaccard coefficient**



Similarity Sketches

But what do we do when we only have a sketch?



Similarity Sketches

Imagine we have two datasets represented by their kth minimum values

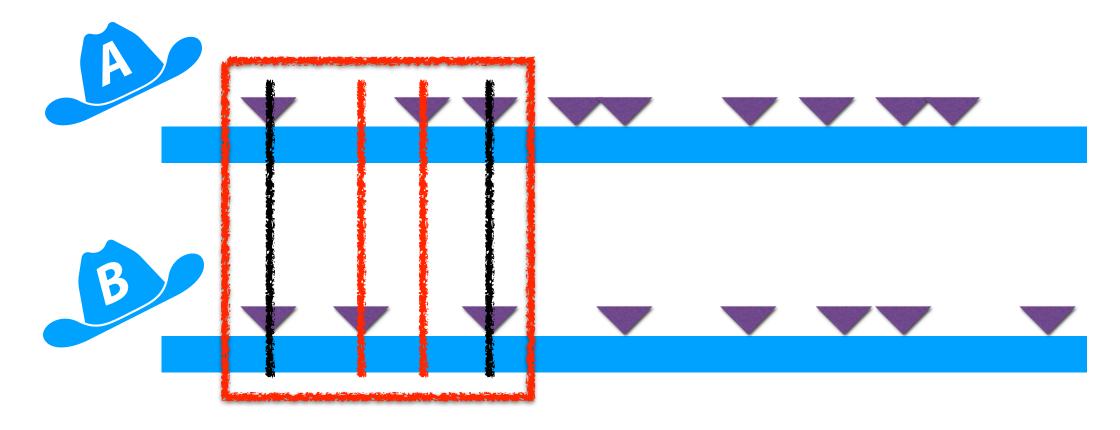


Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

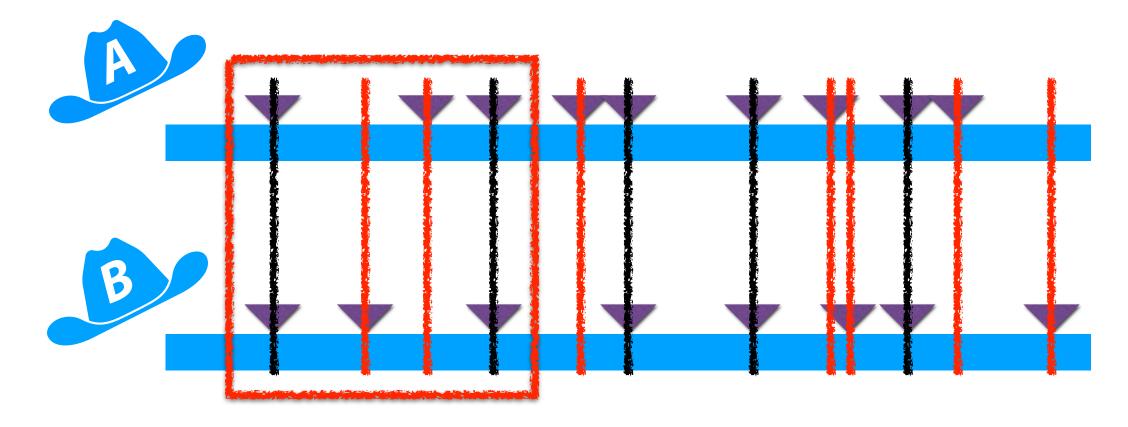
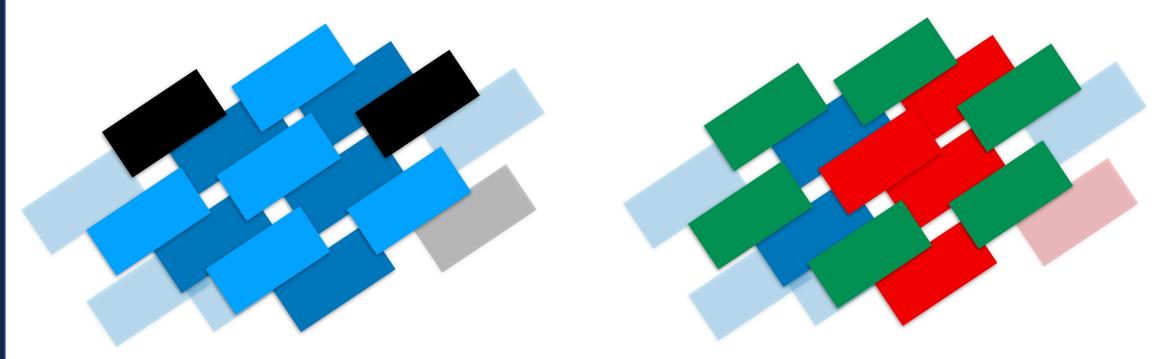


Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

MinHash Sketch

The **k-th minimum value sketch** is built by tracking k minima but only uses one value (the k-th minima) to get **cardinality!**

We can extend this approach into a full **MinHash sketch** that can also estimate **set similarities**.



Minhash Sketch 'ADT' (Use Cases)

Constructor

Cardinality Estimation

Set Similarity Estimation

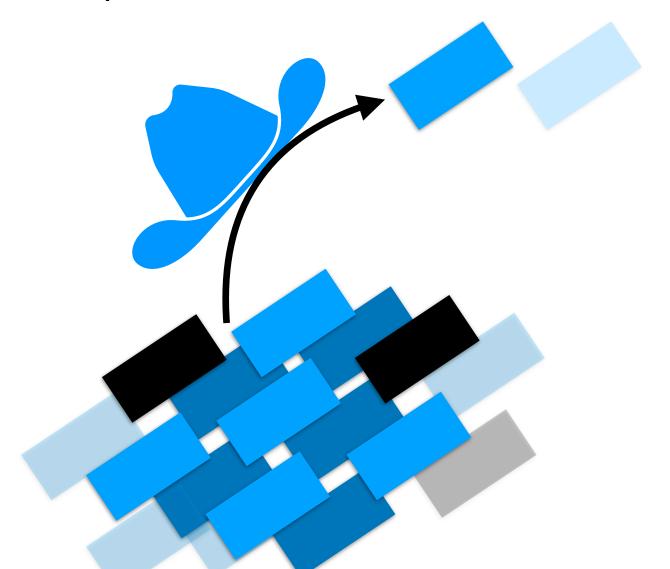
MinHash Construction

A MinHash sketch has three required inputs:

1.

2.

3



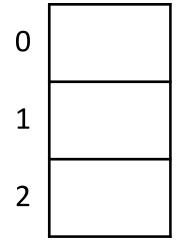
MinHash Construction

$$h(x) = x \% 7$$

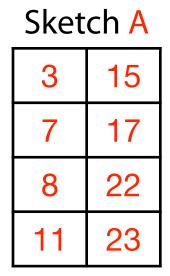
$$k = 3$$

Algorithm is trivial:

- 1. Hash each item
- 2. Keep the k-minimum values in memory (Ignore collisions / duplicates)



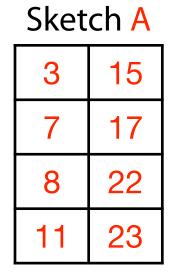
Given sets A and B sampled uniformly from [0, 100], store the bottom-8 **MinHash:**



2	9
3	11
6	17
7	23

Sketch B

We want to estimate the Jaccard Coefficient: $\frac{|A \cup B|}{|A \cap B|}$

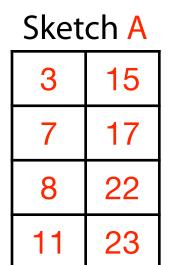


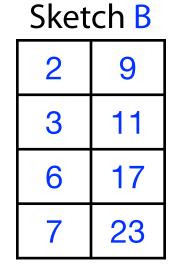
2	9	
3	11	
6	17	
7	23	

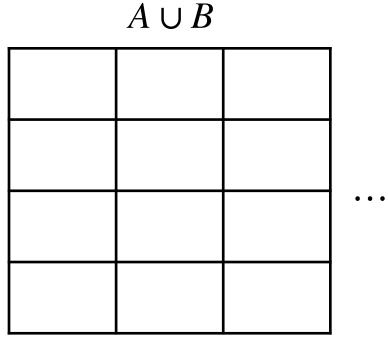
Sketch B

	0				8		1	6	24	
Α		3		7	8	11	15	17	22 23	•••
В		2 3	6	7	9	11		17	23	

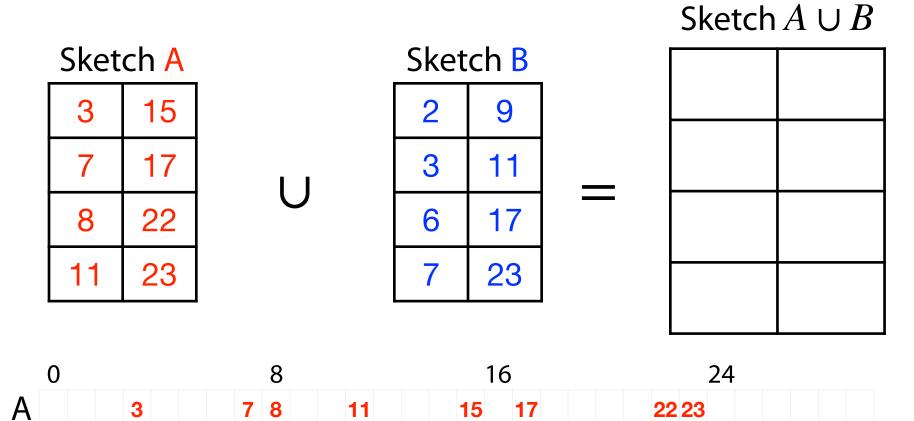
What do we know about $A \cup B$?







We dont $know A \cup B$, but we can make a sketch!



17

17

22 23

23

15

11

11

7 8

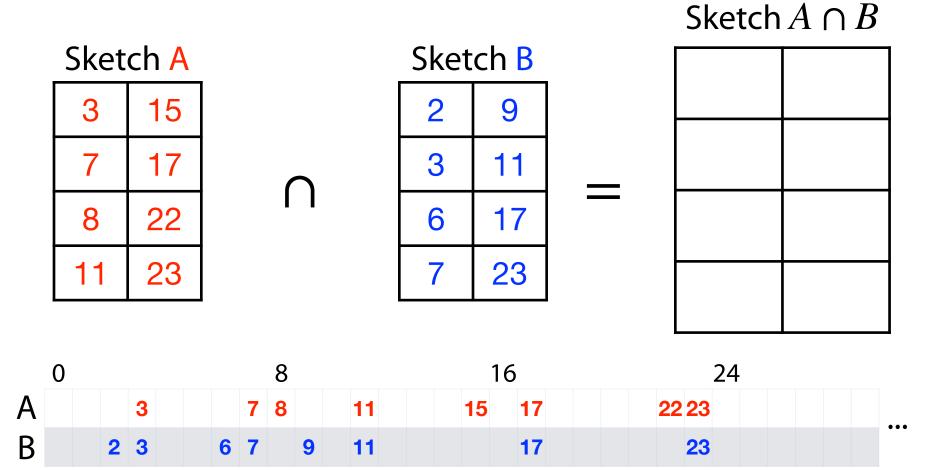
В

Estimate $|A \cup B|$ (the cardinality of the union) from sketch:

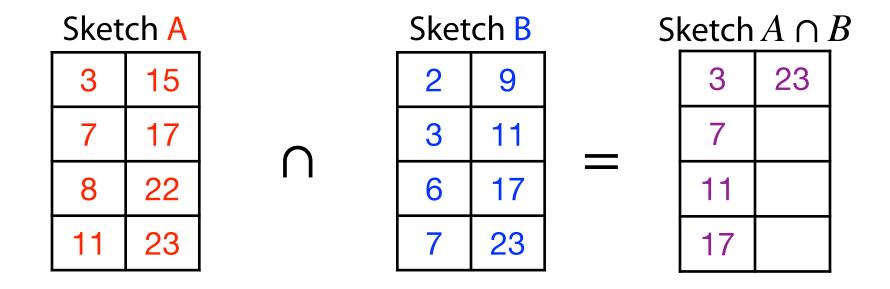
Sketch $A \cup B$ Our sets sampled from [0, 100].

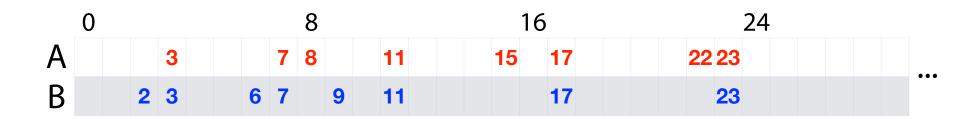
2	8
3	9
6	11
7	15

Can we build a 8-Minhash of $A \cap B$?



Not guaranteed to be able to get a full sketch of the intersection!



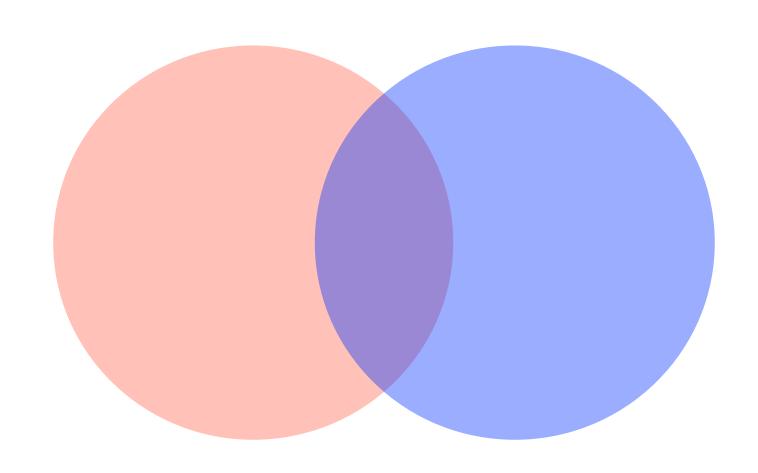


Using MinHash sketches, we can estimate |A|, |B|, and $|A \cup B|$

Is this enough to estimate the Jaccard?

Inclusion-Exclusion Principle

$$|A \cap B| =$$



MinHash Indirect Jaccard Estimation

$$\frac{|A| \cap |B|}{|A| \cup |B|} = \frac{|A| + |B| - |A \cup B|}{|A \cup B|}$$

k = 8 MinHash sketches Our sets sampled from [0, 100]

Sketch A

	_
3	15
7	17
8	22
11	23

Sketch B

JKCCCII D		
2	9	
3	11	
6	17	
7	23	

Sketch of

$$A \cup B$$

 2
 8

 3
 9

 6
 11

 7
 15

$$= \frac{(800/23-1) + (800/23-1) - (800/15-1)}{800/15-1}$$

$$=\frac{34.782 + 34.782 - 53.333 - 1}{53.333 - 1} \approx 0.29$$

MinHash Direct Jaccard Estimate

We can also estimate cardinality directly using our sketches!

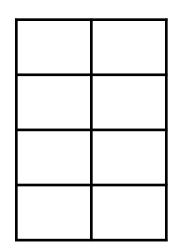
Sketch A

3	15
7	17
8	22
11	23

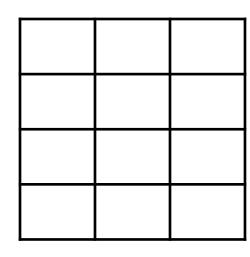
Sketch B

2	9
3	11
6	17
7	23

Intersection

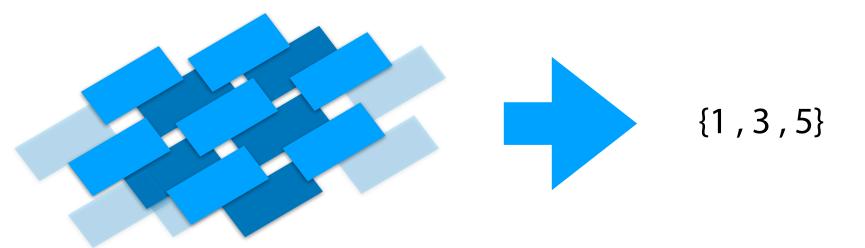


Union



MinHash Sketch

We can convert any hashable dataset into a MinHash sketch



We lose our original dataset, but we can still estimate two things:

1.

2.

Alternative MinHash Sketch Approaches

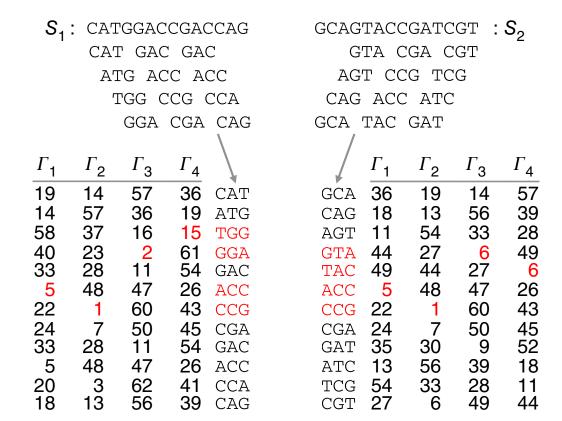
Rather than use one single hashes and take bottom-k, we can also use k hashes — if you have access to that many independent hashes!

1) Sequence decomposed into **kmers**

 S_1 : CATGGACCGACCAG CAT GAC GAC ATG ACC ACC

GCAGTACCGATCGT : S_2 GTA CGA CGT AGT CCG TCG TGG CCG CCA CAG ACC ATC GGA CGA CAG GCA TAC GAT

- 1) Sequence decomposed into **kmers**
- 2) Multiple hash functions (Γ) map kmers to values.



1) Sequence decomposed into **kmers**

2) Multiple hash functions (
$$\Gamma$$
) map kmers to values.

3) The smallest values for each hash function is chosen

$$\left[\frac{5}{5}, \frac{1}{1}, 6, 6 \right]$$

Sketch $\left(S_2 \right)$

57

39

28

49 6

26

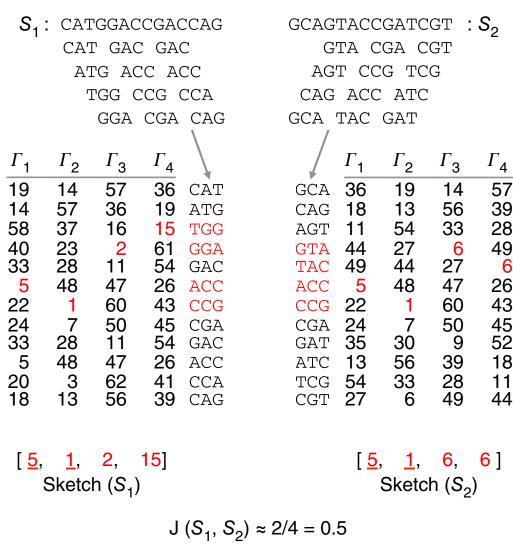
45 52

18

11

- 1) Sequence decomposed into **kmers**
- 2) Multiple hash functions (Γ) map kmers to values.

- 3) The smallest values for each hash function is chosen
- 4) The Jaccard similarity can be estimated by the overlap in the **Min**imum **Hash**es (**MinHash**)



$$J(S_1, S_2) \approx 2/4 = 0.5$$

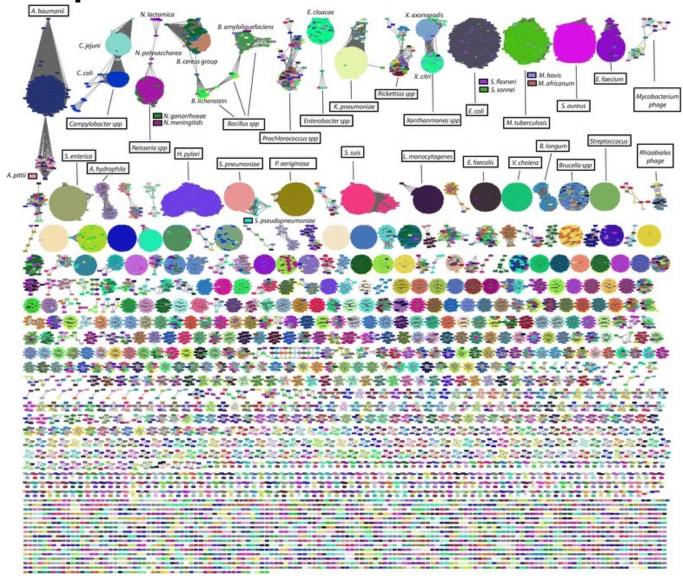
$$S_1: CATGGACCGACCAG$$

$$| | | | | | |$$

$$S_2: GCAGTACCGATCGT$$

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Berlin et al (2015) *Nature Biotechnology*

MinHash in practice



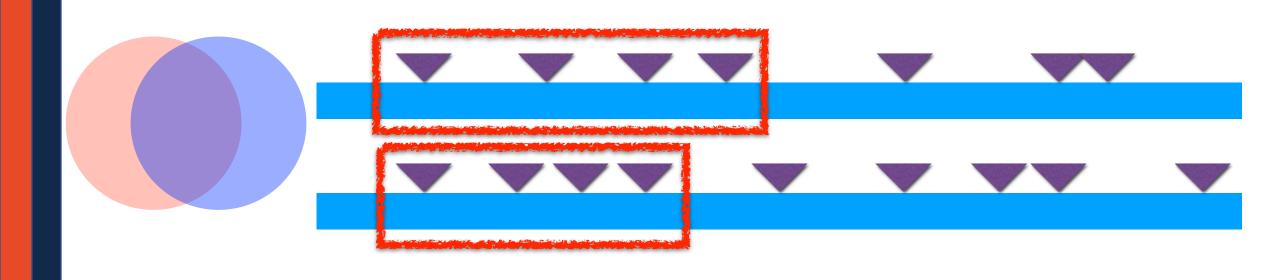
Mash: fast genome and metagenome distance estimation using MinHash Ondov et al (2016) *Genome Biology*

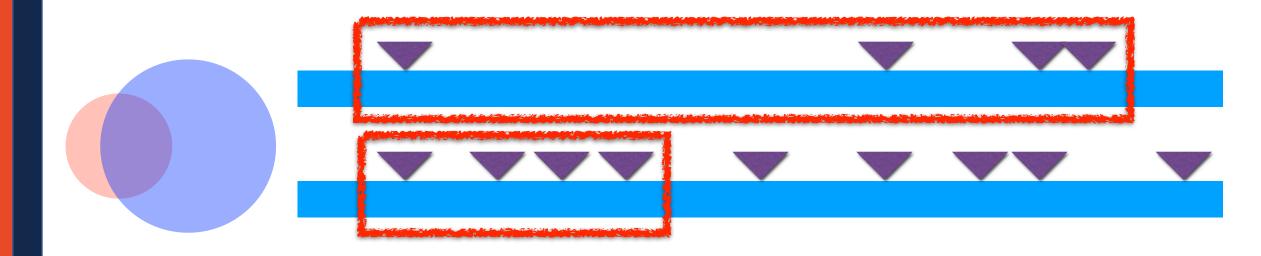
Alternative MinHash Sketch Approaches

What if I have a dataset which is **much** larger than another?

```
S_1 = \{ 1, 3, 40, 59, 82, 101 \}

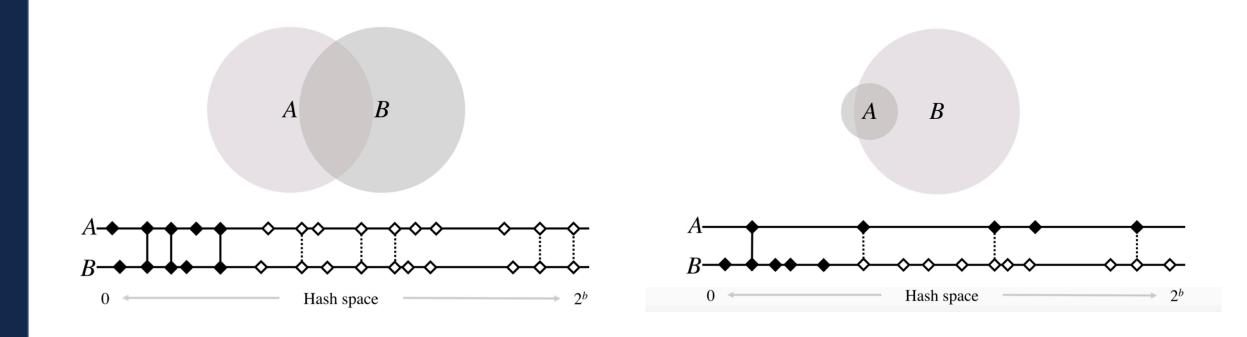
S_2 = \{ 1, 2, 3, 4, 5, 6, 7, ... 59, 82, 101, ... \}
```





Alternative MinHash sketches

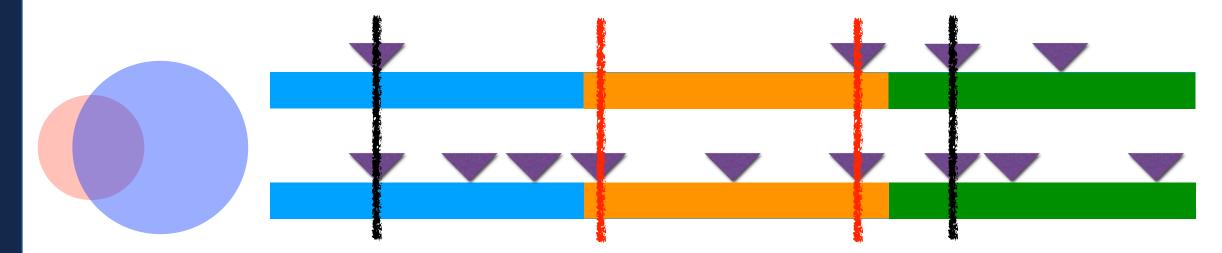
Bottom-k minhash has low accuracy if the cardinality of sets are skewed



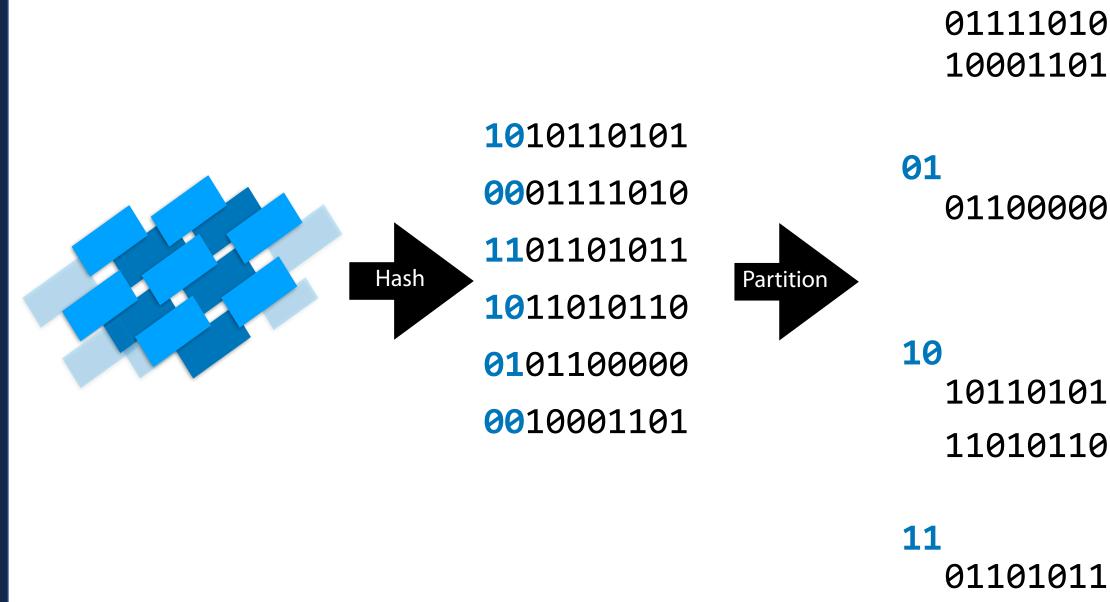
Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren, Christopher B. Buck, and Adam M. Phillippy. **Mash Screen: High-throughput sequence containment estimation for genome discovery**. *Genome biology* 20.1 (2019): 1-13.

Alternative MinHash Sketch Approaches

If there is a large cardinality difference, use k-partitions!



K-Partition Minhash



00

Probabilistic Data Structures

Probabilistic data structures trade accuracy for efficiency

Most can maintain surprisingly good accuracy

"Cheat" Big O limitations on conventional data analysis