Data Structures and Algorithms Review and Return to Cardinality

CS 225 Brad Solomon December 2, 2024

Department of Computer Science

Course Announcements

This week's lab is **optional.** Will be worth the equivalent value in EC

Part 2 of External Research Survey releases tomorrow! Worth 2 EC

Reminder: Exam 5 is this week!

Reminder: Final exam starts as early as Thursday December 12th

Please fill out ICES evaluations!

Learning Objectives

A brief review of exam 5 content

Review high level motivation behind sketching data structure

Introduce the concept of cardinality and cardinality estimation

Graph Implementation: Edge List |V| = n, |E| = m

The equivalent of an 'unordered' data structure

Vertex Storage:

An optional list of vertices

Edge Storage:

A list storing edges as (V1, V2, Weight)

Most graphs are stored as just an edge list!

Graph Implementation: Adjacency Matrix

$$|V| = n, |E| = m$$

Vertex Storage:

A hash table of vertices

Implicitly or explicitly store index

u	0
V	1
w	2
Z	3

	0	1	2	3
0	-	а	С	0
1		-	b	0
2			-	d
3				-

Edge Storage:

A |V| x |V| matrix of edges

Weight is stored at position (u, v)

Adjacency List

Vertex Storage:

A bidirectional linked list with size variable Each node is a pointer to edge in edge list

Edge Storage:

A list of (v1, v2, weight) edges Also store pointers back to nodes

|V| = n, |E| = m

I	
	1

Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	n ²	n+m
insertVertex(v)	1*	n*	1*
removeVertex(v)	n+m	n	deg(v)
insertEdge(u, v)	1	1	1*
removeEdge(u, v)	m	1	min(deg(u), deg(v))
incidentEdges(v)	m	n	deg(v)
areAdjacent(u, v)	m	1	min(deg(u), deg(v))

Summary: DFS and BFS

$$|V| = n, |E| = m$$

Both are **O(n+m)** traversals! They label every edge and every node

BFS DFS

Solves unweighted MST Solves unweighted MST

Solves shortest path

Solves cycle detection Solves cycle detection

Memory bounded by width Memory bounded by longest path

Kruskal's Algorithm

1) Build a **priority queue** on edges

```
KruskalMST(G):
  DisjointSets forest
  foreach (Vertex v : G.vertices()):
    forest.makeSet(v)
  PriorityQueue Q
                   // min edge weight
  Q.buildFromGraph (G.edges ())
  Graph T = (V, \{\})
  while |T.edges()| < n-1:
    Vertex (u, v) = Q.removeMin()
    if forest.find(u) != forest.find(v):
       T.addEdge(u, v)
       forest.union( forest.find(u),
                     forest.find(v) )
  return T
```

10

11

12

13

14

15

16 17

18

19

2) Build a **disjoint set** on vertices

- 3) Repeatedly find min edge If edge connects two sets Union and record edge
- 4) Stop after n-1 edges recorded

Prim's Algorithm

Α	В	С	D	E	F
0, —	2, A	11, E	5, B	8, D	9, D

```
PrimMST(G, s):
     Input: G, Graph;
            s, vertex in G, starting vertex
     Output: T, a minimum spanning tree (MST) of G
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
      p[v] = NULL
     d[s] = 0
10
     PriorityQueue Q // min distance, defined by d[v]
11
12
     Q.buildHeap(G.vertices())
                       // "labeled set"
     Graph T
13
14
     repeat n times:
15
       Vertex m = Q.removeMin()
16
17
       T.add(m)
       foreach (Vertex v : neighbors of m not in T):
18
         if cost(v, m) < d[v]:
19
           d[v] = cost(v, m)
20
           p[v] = m
21
22
     return T
23
```

Dijkstra's Algorithm (SSSP)


```
DijkstraSSSP(G, s):
     foreach (Vertex v : G.vertices()):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
     Graph T // "labeled set"
13
14
15
     repeat n times:
16
       Vertex u = Q.removeMin()
17
       T.add(u)
18
       foreach (Vertex v : neighbors of u not in T):
19
         if cost(u, v) + d[u] < d[v]:
20
           d[v] = cost(u, v) + d[u]
21
           p[v] = u
```

A	В	С	D	E	F	G	Н
	Α	E	В	G	Α	F	С
0	10	16	15	10	7	8	20

Floyd-Warshall Algorithm

Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (not negative weight cycles).

```
1  FloydWarshall(G):
2   Let d be a adj. matrix initialized to +inf
3   foreach (Vertex v : G):
4    d[v][v] = 0
5   foreach (Edge (u, v) : G):
6    d[u][v] = cost(u, v)
7
8   foreach (Vertex u : G):
9    foreach (Vertex v : G):
10        foreach (Vertex w : G):
11        if (d[u, v] > d[u, w] + d[w, v])
12        d[u, v] = d[u, w] + d[w, v]
```

A Hash Table based Dictionary

User Code (is a map):

```
Dictionary<KeyType, ValueType> d;
d[k] = v;
```

A **Hash Table** consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

• Open Hashing: store k, v pairs externally

• Closed Hashing: store k, v pairs in the hash table

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is — Table Size: m

 α_i = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

$$\mathbf{E}[\alpha_{\mathbf{j}}] = \frac{\mathbf{n}}{\mathbf{m}}$$

$$\frac{n}{m}$$
 Table Size: m

Num objects: n

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$Pr[H_{i,j} = 1] = \frac{1}{m}$$

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: $O(1 + \alpha)$

Insert runs in: O(1)

Remove runs in: $O(1 + \alpha)$

Running Times (Don't memorize these equations, no need.)

The expected number of probes for find(key) under SUHA

Linear Probing:

- Successful: $\frac{1}{1}(1 + \frac{1}{1-\alpha})$
- Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

Double Hashing:

- Successful: $1/\alpha * ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

Separate Chaining:

- Successful: $1 + \alpha/2$
- Unsuccessful: $1 + \alpha$

Instead, observe:

- As α increases:

Runtime approaches infinity!

- If α is constant:

Runtime is a constant!

Resizing a hash table

When and how do you resize?

Any (review) questions?

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by Big Data (Large N)

Sky Survey Projects	Data Volume
DPOSS (The Palomar Digital Sky Survey)	3 TB
2MASS (The Two Micron All-Sky Survey)	10 TB
GBT (Green Bank Telescope)	20 PB
GALEX (The Galaxy Evolution Explorer)	30 TB
SDSS (The Sloan Digital Sky Survey)	40 TB
SkyMapper Southern Sky Survey	500 TB
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)	~ 40 PB expected
LSST (The Large Synoptic Survey Telescope)	~ 200 PB expected
SKA (The Square Kilometer Array)	~ 4.6 EB expected

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB

Image: https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects in a memory-constrained environment?

Constrained by resource limitations

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Bloom Filters

A probabilistic data structure storing a set of values

 $h_{\{1,2,3,...,k\}}$

Has three key properties:

k, number of hash functions n, expected number of insertions m, filter size in bits

Expected false positive rate: $\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$

Optimal accuracy when: $k^* = \ln 2 \cdot \frac{m}{n}$

Bloom Filter Use Cases

Which of the following problems can be solved with a bloom filter?

A) Find the closest matching item to a query of interest

B) Check if a query exists in a dataset

C) Compare the similarity between two datasets

D) Count the number of unique items in a dataset

Cardinality

Sometimes its not possible or realistic to count all objects!

Estimate: 60 billion — 130 trillion

Image: https://doi.org/10.1038/nature03597

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399
6925
2660
2314

Imagine I fill a hat with numbered cards and draw one card out at random.

If I told you the value of the card was 95, what have we learned?

Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the **minimum** value was 95, what have we learned?

Imagine we have multiple uniform random sets with different minima.

Let min = 95. Can we estimate N, the cardinality of the set?

Let min = 95. Can we estimate N, the cardinality of the set?

Claim:
$$95 \approx \frac{1000}{(N+1)}$$

Let min = 95. Can we estimate N, the cardinality of the set?

Conceptually: If we scatter N points randomly across the interval, we end up with N+1 partitions, each about 1000/(N+1) long

Assuming our first 'partition' is about average: $95 \approx 1000/(N+1)$ $N+1 \approx 10.5$

 $N \approx 9.5$

Why do we care about "the hat problem"?

Why do we care about "the hat problem"?

Imagine we have a SUHA hash h over a range m.

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a **sketch** that estimates the cardinality!

h(x)

0

m - 1

Imagine we have a SUHA hash h over a range m.

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a **sketch** that estimates the cardinality!

To make the math work out, lets normalize our hash...

$$h'(x) = h(x) / (m-1)$$

0

1

Cardinality Sketch

Let $M = min(X_1, X_2, ..., X_N)$ where each $X_i \in [0, 1]$ is an uniform independent random variable

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

0

Cardinality Sketch

Consider an N + 1 draw:

$$X_1 X_2 X_3 \cdots X_N X_{N+1}$$

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 < i < N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

 X_{N+1} will not change minimum with probability 1-M

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 \cdots X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Thus,
$$\mathbf{E}[M] = \frac{1}{N+1}$$

Claim:
$$E[M] = \frac{1}{N+1}$$
 $N \approx \frac{1}{M} - 1$

$$N \approx \frac{1}{M} - 1$$

Attempt 1

0.962	0.328	0.771	0.952	0.923
-------	-------	-------	-------	-------

Attempt 2

0.253	0.839	0.327	0.655	0.491
-------	-------	-------	-------	-------

Attempt 3

The minimum hash is a valid sketch of a dataset but can we do better?

0

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\mathbf{E}[\mathbf{M_k}] = \frac{k}{N+1}$$

$$0 \quad M_1 \quad M_2 \quad M_3 \quad \dots \quad M_k$$

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\frac{\mathbf{E}[M_k]}{k} = \frac{1}{N+1}$$
$$= \left[\mathbf{E}[M_1] + (\mathbf{E}[M_2] - \mathbf{E}[M_1]) + \dots + (\mathbf{E}[M_k] - \mathbf{E}[M_{k-1}]) \right] \cdot \frac{1}{k}$$

$$M_1$$

$$M_2$$

$$M_3$$
 ..

$$M_{k-1}$$

$$M_k$$

value (KMV)

$$\frac{1}{N+1} = \frac{\mathbf{E}[M_k]}{k}$$

$$= \left[\mathbf{E}[M_1] + (\mathbf{E}[M_2] - \mathbf{E}[M_1]) + \dots + (\mathbf{E}[M_k] - \mathbf{E}[M_{k-1}])\right] \cdot \frac{1}{k}$$

$$0 \qquad 1$$

$$M_1 \quad M_2 \quad M_3 \qquad M_{k-1} M_k$$

$$k^{th} \text{ minimum} \qquad Averages k \text{ estimates for } \frac{1}{N+1}$$

Given any dataset and a SUHA hash function, we can **estimate the number of unique items** by tracking the **k-th minimum hash value**.

To use the k-th min, we have to track k minima. Can we use ALL minima?

Applied Cardinalities

Cardinalities

$$|A|$$
 $|B|$
 $|A \cup B|$
 $|A \cap B|$

Set similarities

$$O = \frac{|A \cap B|}{\min(|A|, |B|)}$$

$$J = \frac{|A \cap B|}{|A \cup B|}$$

Real-world Meaning

How can we describe how **similar** two sets are?

How can we describe how *similar* two sets are?

To measure **similarity** of A & B, we need both a measure of how similar the sets are but also the total size of both sets.

$$J = \frac{|A \cap B|}{|A \cup B|}$$

J is the **Jaccard coefficient**

Similarity Sketches

But what do we do when we only have a sketch?

Similarity Sketches

Imagine we have two datasets represented by their kth minimum values

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)