
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

December 2, 2024

Review and Return to Cardinality

Course Announcements

This week’s lab is optional. Will be worth the equivalent value in EC

Reminder: Exam 5 is this week!

Reminder: Final exam starts as early as Thursday December 12th

Please fill out ICES evaluations!

Part 2 of External Research Survey releases tomorrow! Worth 2 EC

Learning Objectives

Introduce the concept of cardinality and cardinality estimation

Review high level motivation behind sketching data structure

A brief review of exam 5 content

v

u

w z

Vertex Storage:

Edge Storage:

|V|= n,|E|= mGraph Implementation: Edge List
The equivalent of an ‘unordered’ data structure

u

v

w

z

u v a

v w b

u w c

w z d

a c

b d An optional list of vertices

A list storing edges as (V1, V2, Weight)

Most graphs are stored as just an edge list!

Graph Implementation: Adjacency Matrix

v

u

w

a c

b
z

d

|V|= n,|E|= m

0 1 2 3

0 - a c 0

1 - b 0

2 - d

3 -

u 0

v 1

w 2

z 3

Vertex Storage:

Edge Storage:

A hash table of vertices

Implicitly or explicitly store index

A |V| x |V| matrix of edges

Weight is stored at position (u, v)

Adjacency List Vertex Storage:

Edge Storage:

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

*a *c

*a *b

*b *c *d

*d

d=2

d=2

d=3

d=1

A bidirectional linked list with size variable
Each node is a pointer to edge in edge list

A list of (v1, v2, weight) edges
Also store pointers back to nodes

Expressed as O(f)
Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1* n* 1*

removeVertex(v) n+m n deg(v)

insertEdge(u, v) 1 1 1*

removeEdge(u, v) m 1
min(deg(u),

deg(v))

incidentEdges(v) m n deg(v)

areAdjacent(u, v) m 1
min(deg(u),

deg(v))

|V|= n,|E|= m

Summary: DFS and BFS
Both are O(n+m) traversals! They label every edge and every node

|V|= n,|E|= m

BFS DFS

Solves unweighted MST

Solves shortest path

Solves cycle detection

Memory bounded by width

Solves unweighted MST

Solves cycle detection

Memory bounded by longest path

Kruskal’s Algorithm 1) Build a priority queue on edges

2) Build a disjoint set on vertices

3) Repeatedly find min edge

If edge connects two sets

Union and record edge

4) Stop after n-1 edges recorded

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Prim’s Algorithm PrimMST(G, s):
 Input: G, Graph;
 s, vertex in G, starting vertex
 Output: T, a minimum spanning tree (MST) of G

 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A
C

D E

B

F

16

5

2
15

11

8

12

17
13

9

A B C D E F

0, — 2, A 11, E 5, B 8, D 9, D

Dijkstra’s Algorithm (SSSP)
DijkstraSSSP(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if cost(u, v) + d[u] < d[v]:
 d[v] = cost(u, v) + d[u]
 p[v] = u

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A
C

D

E

B

F G

H7

5
4

10
7

5

3

6

25

3

A B C D E F G H

-- A E B G A F C
0 10 16 15 10 7 8 20

1

Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alternative to Dijkstra in the presence
of negative-weight edges (not negative weight cycles).

FloydWarshall(G):
 Let d be a adj. matrix initialized to +inf
 foreach (Vertex v : G):
 d[v][v] = 0
 foreach (Edge (u, v) : G):
 d[u][v] = cost(u, v)

 foreach (Vertex u : G):
 foreach (Vertex v : G):
 foreach (Vertex w : G):
 if (d[u, v] > d[u, w] + d[w, v])
 d[u, v] = d[u, w] + d[w, v]

1
2
3
4
5
6
7
8
9

10
11
12

A Hash Table based Dictionary

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

User Code (is a map):

A Hash Table consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

0
1 ∅
2
3 ∅
4

Ali
B+

Alice
A+

Anna
A-
∅

0
1
2
3

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] Pr[Hi,j = 1] =
1
m

E[αj] = n * Pr(Hi,j = 1)

E[αj] =
n
m

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: O(1 + α)

Insert runs in: O(1)

Remove runs in: O(1 + α)

0
1
2
3
4
5
6
7
8
9

10

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

Separate Chaining:

• Successful: 1 + α/2

• Unsuccessful: 1 + α

The expected number of probes for find(key) under SUHA
(Don’t memorize these equations, no need.)

Instead, observe:

- As α increases:

- If α is constant:

Runtime approaches infinity!

Runtime is a constant!

Resizing a hash table
When and how do you resize?

Any (review) questions?

Memory-Constrained Data Structures

Constrained by Big Data (Large)N

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB
Image: https://doi.org/10.1038/nature03597

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

cache

RAM

disk

network

< 1 second

Months

Years

Hours - Days

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Constrained by resource limitations

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

https://gist.github.com/hellerbarde/2843375

Bloom Filters

Optimal accuracy when:

, number of hash functionsk
, expected number of insertionsn
, filter size in bitsm

h{1,2,3,...,k}A probabilistic data structure storing a set of values

Has three key properties:

k* = ln 2 ⋅
m
n

Expected false positive rate: (1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

Bloom Filter Use Cases
Which of the following problems can be solved with a bloom filter?

A) Find the closest matching item to a query of interest

B) Check if a query exists in a dataset

C) Compare the similarity between two datasets

D) Count the number of unique items in a dataset

Cardinality
946

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960

42
6901
4336
9228
3317
399

6925
2660
2314
5588

Image: https://doi.org/10.1038/nature03597
Estimate: 60 billion — 130 trillion

Sometimes its not possible or realistic to count all objects!

https://doi.org/10.1038/nature03597

Cardinality Estimation

95

Imagine I fill a hat with numbered cards and draw one card out at random.

If I told you the value of the card was 95, what have we learned?

Analogy from Ben Langmead

95

Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the minimum value was 95, what have we learned?

Cardinality Estimation

0 999

Imagine we have multiple uniform random sets with different minima.

Cardinality Estimation

95 200 50010

0 999

Let min = 95. Can we estimate , the cardinality of the set?N

95

Cardinality Estimation

0 999

Let min = 95. Can we estimate , the cardinality of the set?N

95

Cardinality Estimation

Claim: 95 ≈
1000

(N + 1)

0 999

Let min = 95. Can we estimate , the cardinality of the set?N

95

Cardinality Estimation

95 ≈ 1000/(N + 1)
N + 1 ≈ 10.5

N ≈ 9.5

Conceptually: If we scatter points randomly across the interval, we
end up with + 1 partitions, each about long

N
N 1000/(N + 1)

Assuming our first ‘partition’ is about average:

Why do we care about “the hat problem”?

Cardinality Estimation

Why do we care about “the hat problem”?

Universe of card sets Key Value

m possible minima

Cardinality Estimation

Cardinality Estimation
Imagine we have a SUHA hash over a range .h m

0 m − 1

h(x)

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a sketch that estimates the cardinality!

Cardinality Estimation

0 1

h′ (x) = h(x) / (m − 1)

To make the math work out, lets normalize our hash…

Imagine we have a SUHA hash over a range .h m

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a sketch that estimates the cardinality!

Cardinality Sketch

0 1

Let where each is an uniform
independent random variable

M = min(X1, X2, . . . , XN) Xi ∈ [0, 1]

Claim: E[M] =
1

N + 1

Cardinality Sketch

0 1M

 can end up in one of two ranges:XN+1

X1 X2 X3 XN XN+1
...Consider an draw:N + 1 M = min

1≤i≤N
Xi

Cardinality Sketch

0 1M

 can end up in one of two ranges:XN+1

X1 X2 X3 XN XN+1
...Consider an draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability XN+1 M

Cardinality Sketch

0 1M

 can end up in one of two ranges:XN+1

X1 X2 X3 XN XN+1
...Consider an draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability XN+1 M

 will not change minimum with probability XN+1 1 − M

Cardinality Sketch

0 1M

X1 X2 X3 XN XN+1
...Consider an draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability XN+1 M

By definition of SUHA, has a chance of being smallest itemXN+1
1

N + 1

Cardinality Sketch

0 1M

X1 X2 X3 XN XN+1
...Consider an draw:N + 1 M = min

1≤i≤N
Xi

 will be the new minimum with probability XN+1 M

By definition of SUHA, has a chance of being smallest itemXN+1
1

N + 1

Thus, E[M] =
1

N + 1

0.962 0.328 0.771 0.952 0.923Attempt 1

0.253 0.839 0.327 0.655 0.491Attempt 2

0.134 0.580 0.364 0.743 0.931Attempt 3

N ≈
1
M

− 1Claim: E[M] =
1

N + 1

Cardinality Sketch

The minimum hash is a valid sketch of a dataset but can we do better?

Cardinality Sketch

0 1

M1 M2 M3 Mk

Claim: Taking the -smallest hash value is a better sketch!kth

Cardinality Sketch

0 1

Claim: E[Mk] =
k

N + 1

...

Mk−1

Claim: Taking the -smallest hash value is a better sketch!kth

Cardinality Sketch

Claim:
E[Mk]

k
=

1
N + 1

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

M1 M2 M3 Mk...

Cardinality Sketch

1
N + 1

=
E[Mk]

k

= [E[M1] + (E[M2] − E[M1]) + . . . + (E[Mk] − E[Mk−1])] ⋅
1
k

1

......

Averages estimates for k
1

N + 1

0

... ...

M1 M2 M3 MkMk−1

...

 minimum
value (KMV)
kth

Cardinality Sketch

True cardinality = 1,000

Cardinality Sketch

>Read 1
ATGGTTAGAATTAAACCCGG
TGCTAATAAACCUAGTGATG
>Read 2
CGATAGCACAGGTAGATCC
TACGTAGAGGTCATTAGCC
>Read 3
TACGTAGAGGTCATTAGCCG
TGCTAATAAACCUAGTGATG

Hash 0.253 0.839 0.327 0.655 0.491

Given any dataset and a SUHA hash function, we can estimate the
number of unique items by tracking the k-th minimum hash value.

To use the k-th min, we have to track k minima. Can we use ALL minima?

Applied Cardinalities
Real-world
Meaning

AGGCCACAGTGTATTATGACTG
||||||||||| |||||||||
AGGCCACAGTGAGTTATGACTG

AAAAAAAAAAAGATGT-AAGTA
|||||||||||||||| |||||
AAAAAAAAAAAGATGTAAAGTA

GAGG--TCAGATTCACAGCCAC
|||| ||||||||||||||||
GAGGGGTCAGATTCACAGCCAC

Set similarities

J =
|A ∩ B |
|A ∪ B |

O =
|A ∩ B |

min(|A | , |B |)

Cardinalities

|A |
|B |

|A ∪ B |
|A ∩ B |

Set Similarity Review
How can we describe how similar two sets are?

How can we describe how similar two sets are?

Set Similarity Review

Set Similarity Review
To measure similarity of & , we need both a measure of how
similar the sets are but also the total size of both sets.

A B

J =
|A ∩ B |
|A ∪ B |

 is the Jaccard coefficientJ

|A ∩ B |
|A ∪ B |

=

|A ∩ B |
|A ∪ B |

=

0 <
|A ∩ B |
|A ∪ B |

< 1

0

1

Set Similarity Review

Similarity Sketches

But what do we do when we only have a sketch?

BA

A

B

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. Mash Screen:
high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Similarity Sketches

Imagine we have two datasets represented by their th minimum valuesk

A

B

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. Mash Screen:
high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

