Data Structures and Algorithms Cardinality Sketches

CS 225 Brad Solomon

November 22, 2023

Department of Computer Science

Learning Objectives

Finish discussing bloom filters (and review bit vectors)

Introduce the concept of cardinality and cardinality estimation

Demonstrate the relationship between cardinality and similarity

Introduce the MinHash Sketch for set similarity detection

Bloom Filters

A probabilistic data structure storing a set of values

 $h_{\{1,2,3,...,k\}}$

Has three key properties:

k, number of hash functions

n, expected number of insertions

m, filter size in bits

Expected false positive rate: $\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$

Optimal accuracy when: $k^* = \ln 2 \cdot \frac{m}{n}$

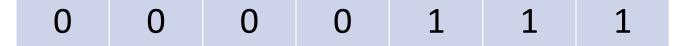
Bitwise Operators in C++

How can we encode a bit vector in C++?

Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab_Bloom won't do this but MP_Sketching will!



Bitwise Operators in C++

Let **A** = 10110 Let **B** = 01110

~B:

A & B:

A | B:

A >> 2:

B << 2:

Bit Vectors: Unioning

Bit Vectors can be trivially merged using bit-wise union.

0	1		0	0		0	
1	0		1	1		1	
2	1		2	1		2	
3	1		3	0		3	
4	0	U	4	0	=	4	
5	0		5	0		5	
6	1		6	1		6	
7	0		7	1		7	
8	0		8	1		8	
9	1		9	1		9	

Bit Vectors: Intersection

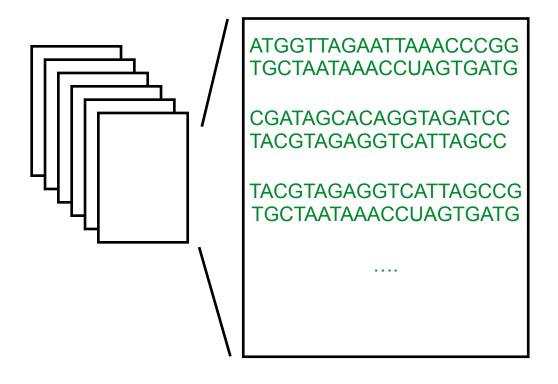
Bit Vectors can be trivially merged using bit-wise intersection.

0	1	0	0	0	
1	0	1	1	1	
2	1	2	1	2	
3	1	3	0	3	
4	0	\bigcup 4	0	= 4	
5	0	5	0	5	
6	1	6	1	6	
7	0	7	1	7	
8	0	8	1	8	
9	1	9	1	9	

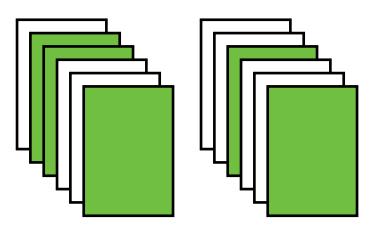
Bit Vector Merging

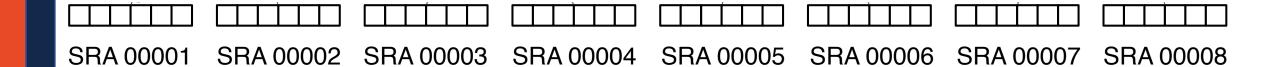
What is the conceptual meaning behind union and intersection?

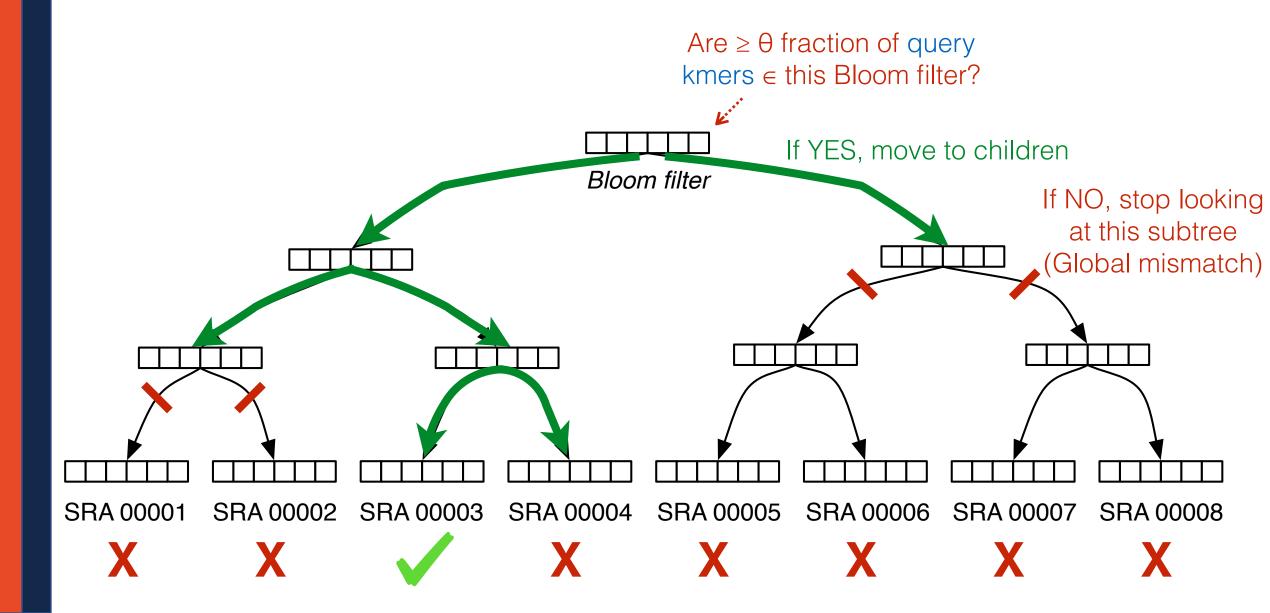
Imagine we have a large collection of text...

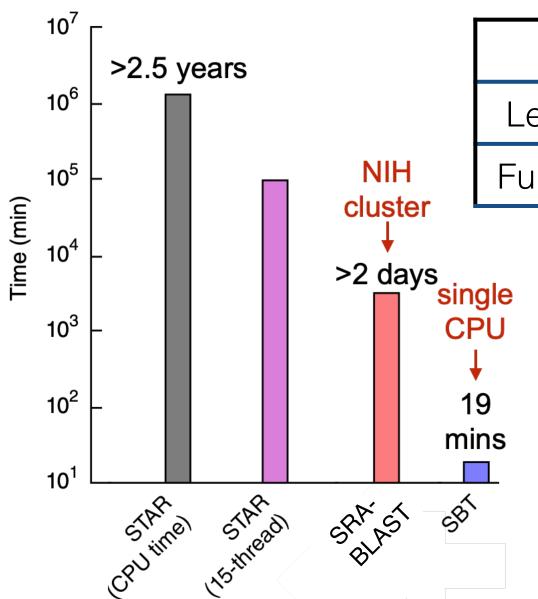


And our goal is to search these files for a query of interest...









	SRA	FASTA.gz	SBT
Leaves	4966 GB	2692 GB	63 GB
Full Tree	-	-	200 GB

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." *Nature biotechnology* 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic sequencing databases using split sequence bloom trees." *International Conference on Research in Computational Molecular Biology*. Springer, Cham, 2017.

Sun, Chen, et al. "Allsome sequence bloom trees." *International Conference on Research in Computational Molecular Biology*. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence bloom trees." *Bioinformatics* 36.3 (2020): 721-727.

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." *Proceedings of the 2003 ACM SIGMOD international conference on Management of data*. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." *Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies*. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient Counting Bloom Filter." 2021 17th International Conference on Network and Service Management (CNSM). IEEE, 2021.

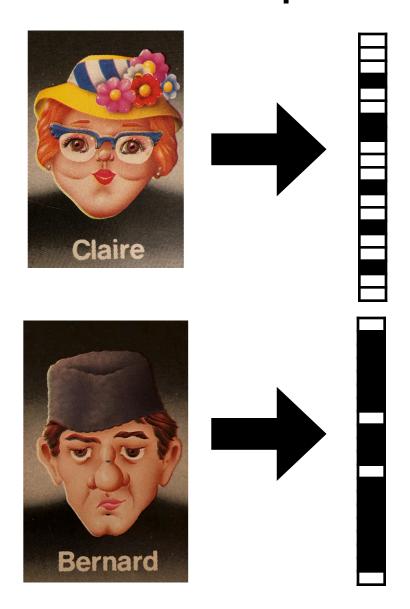
Mitzenmacher, Michael. "Compressed bloom filters." *IEEE/ACM transactions on networking* 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." *Information Systems* 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." *Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms*. 2004.

There are many more than shown here...

The hidden problem with (most) sketches...



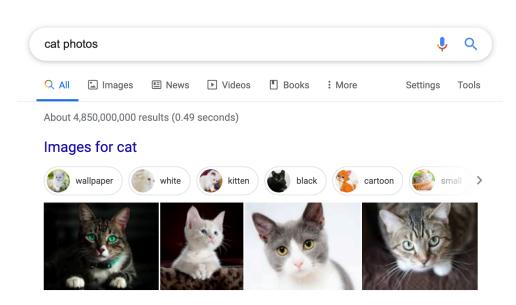
Cardinality

Cardinality is a measure of how many unique items are in a set

2
4

Cardinality

Sometimes its not possible or realistic to count all objects!



Estimate: 60 billion — 130 trillion

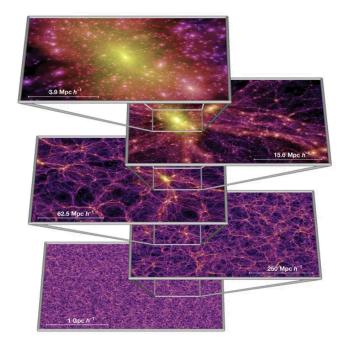
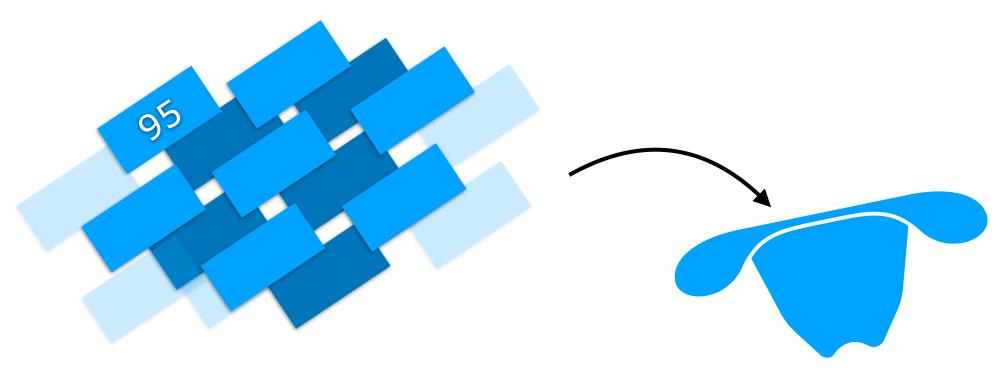


Image: https://doi.org/10.1038/nature03597

5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336
9228
3317
399
6925
2660
2314

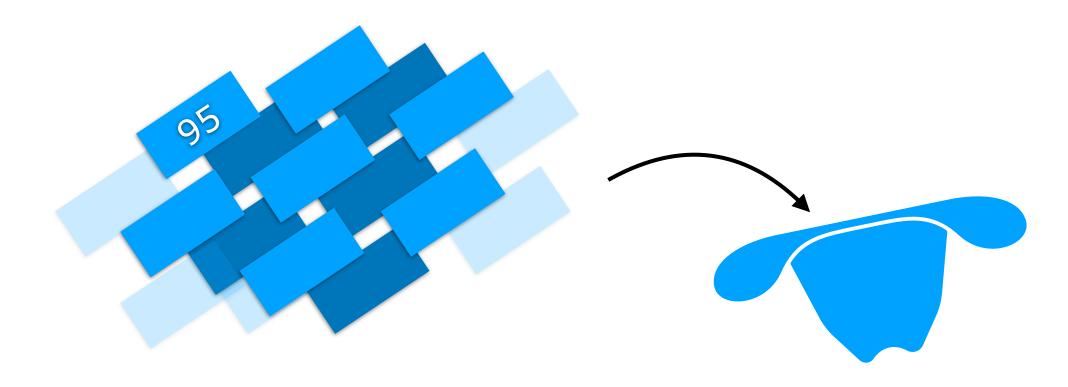
Imagine I fill a hat with numbered cards and draw one card out at random.

If I told you the value of the card was 95, what have we learned?



Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the **minimum** value was 95, what have we learned?



Imagine we have multiple uniform random sets with different minima.

999

Let min = 95. Can we estimate N, the cardinality of the set?

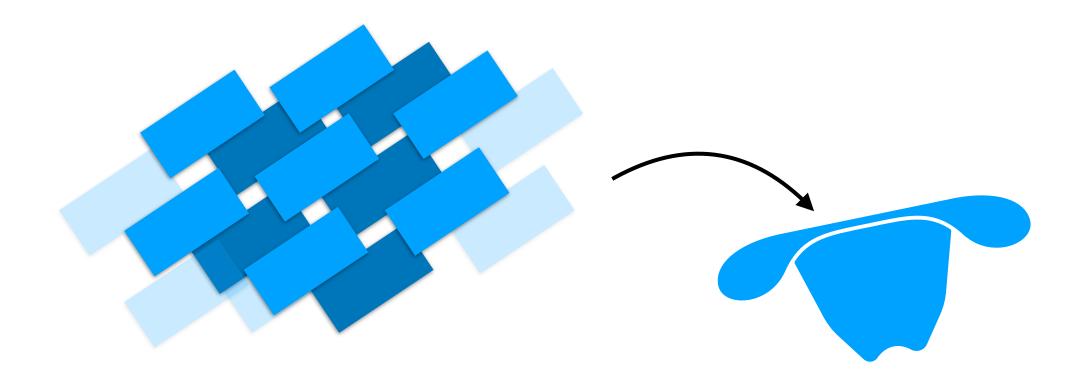
Let min = 95. Can we estimate N, the cardinality of the set?

Conceptually: If we scatter N points randomly across the interval, we end up with N+1 partitions, each about 1000/(N+1) long

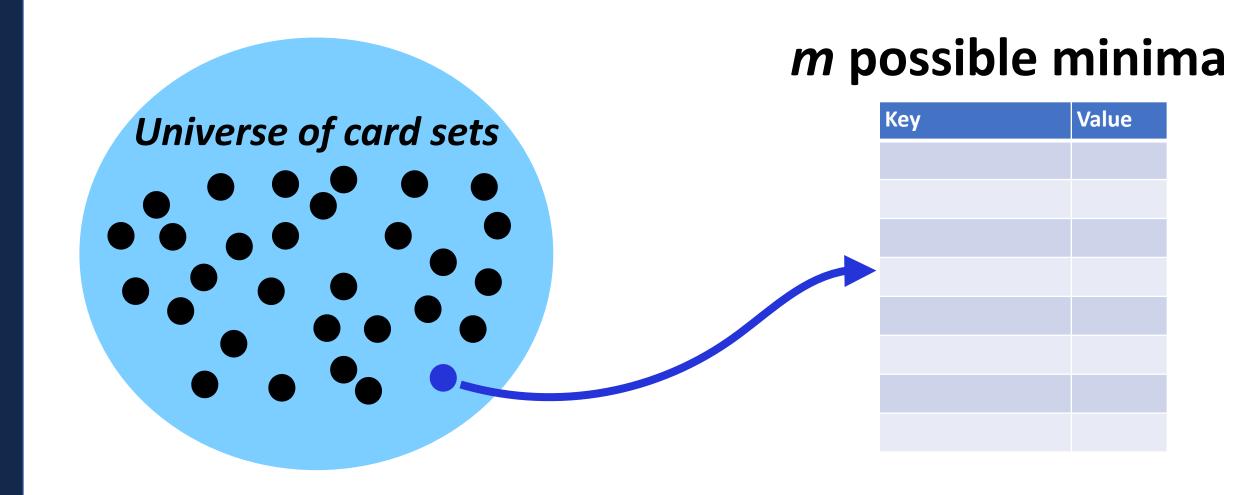
Assuming our first 'partition' is about average: $95 \approx 1000/(N+1)$ $N+1 \approx 10.5$

 $N \approx 9.5$

Why do we care about "the hat problem"?



Why do we care about "the hat problem"?



Now imagine we have a SUHA hash h over a range m.

Here a hash insert is equivalent to adding a card to our hat!

Now storing only the minimum hash value is a **sketch!**

h(x)

0

m - 1

Let $M = min(X_1, X_2, ..., X_N)$ where each $X_i \in [0, 1]$ is an uniform independent random variable

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

0

Consider an N + 1 draw:

$$X_1 X_2 X_3 \cdots X_N X_{N+1}$$

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

Consider an N + 1 draw:

$$X_1 \mid X_2 \mid X_3 \mid \cdots \mid X_N \mid X_{N+1}$$

$$M = \min_{1 < i < N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

 X_{N+1} will not change minimum with probability 1-M



Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 \cdots X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Thus,
$$\mathbf{E}[M] = \frac{1}{N+1}$$

1

Claim:
$$E[M] = \frac{1}{N+1}$$
 $N \approx \frac{1}{M} - 1$

$$N \approx \frac{1}{M} - 1$$

Attempt 1

0.962	0.328	0.771	0.952	0.923
-------	-------	-------	-------	-------

Attempt 2

Attempt 3

The minimum hash is a valid sketch of a dataset but can we do better?

0

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\mathbf{E}[\mathbf{M_k}] = \frac{k}{N+1}$$

$$0 \quad M_1 \quad M_2 \quad M_3 \quad \dots \quad M_k$$

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\frac{\mathbf{E}[M_k]}{k} = \frac{1}{N+1}$$
$$= \left[\mathbf{E}[M_1] + (\mathbf{E}[M_2] - \mathbf{E}[M_1]) + \dots + (\mathbf{E}[M_k] - \mathbf{E}[M_{k-1}]) \right] \cdot \frac{1}{k}$$

$$M_1$$

 M_2

 M_3 ..

 M_{k-1}

 M_k

value (KMV)

$$\frac{1}{N+1} = \frac{\mathbf{E}[M_k]}{k}$$

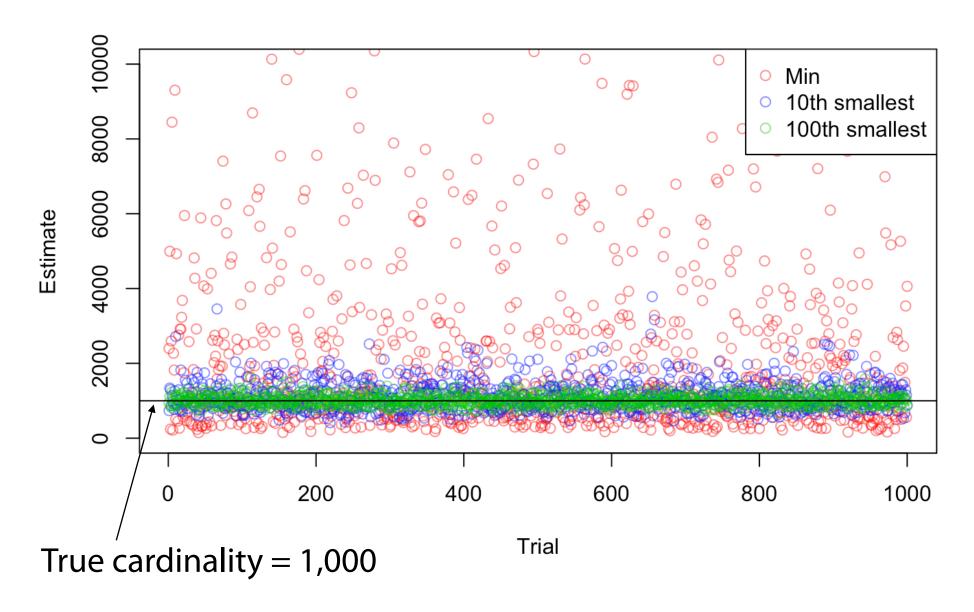
$$= \left[\mathbf{E}[M_1] + (\mathbf{E}[M_2] - \mathbf{E}[M_1]) + \dots + (\mathbf{E}[M_k] - \mathbf{E}[M_{k-1}])\right] \cdot \frac{1}{k}$$

$$0 \qquad 1$$

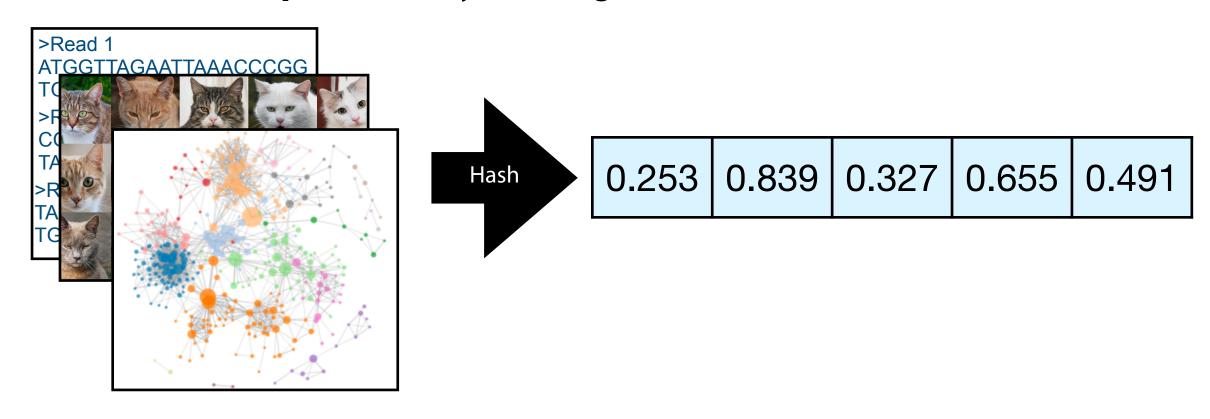
$$M_1 \quad M_2 \quad M_3 \qquad M_{k-1} M_k$$

$$k^{th} \text{ minimum} \qquad \text{Averages } k \text{ ostimates for } \frac{1}{k}$$

Averages k estimates for $\frac{1}{N+1}$



Given any dataset and a SUHA hash function, we can **estimate the number of unique items** by tracking the **k-th minimum hash value**.



To use the k-th min, we have to track k minima. Can we use ALL minima?

Applied Cardinalities

Cardinalities

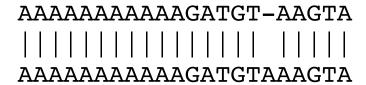
$$|A|$$
 $|B|$
 $|A \cup B|$
 $|A \cap B|$

Set similarities

$$O = \frac{|A \cap B|}{\min(|A|, |B|)}$$

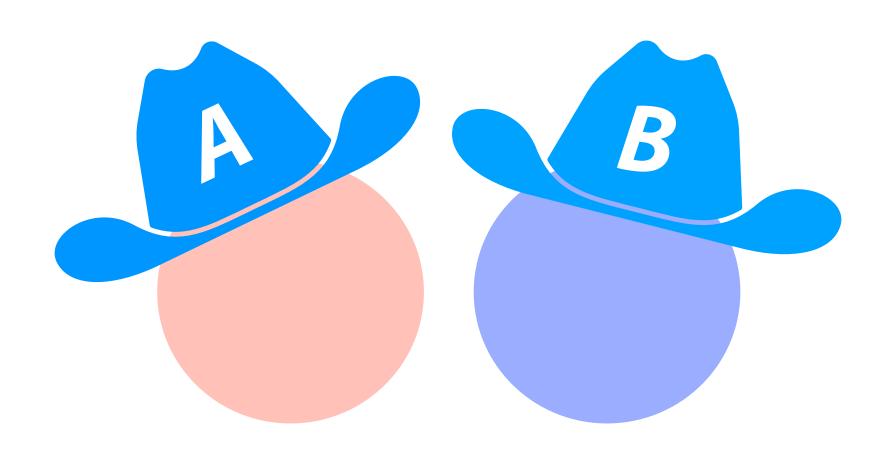
$$J = \frac{|A \cap B|}{|A \cup B|}$$

Real-world Meaning



Similarity Sketches

But what do we do when we only have a sketch?



Similarity Sketches

Imagine we have two datasets represented by their kth minimum values

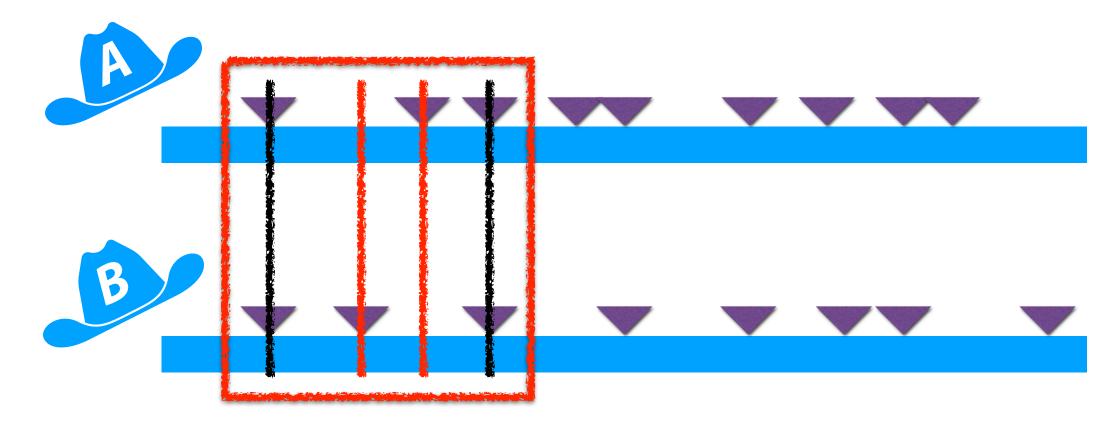


Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

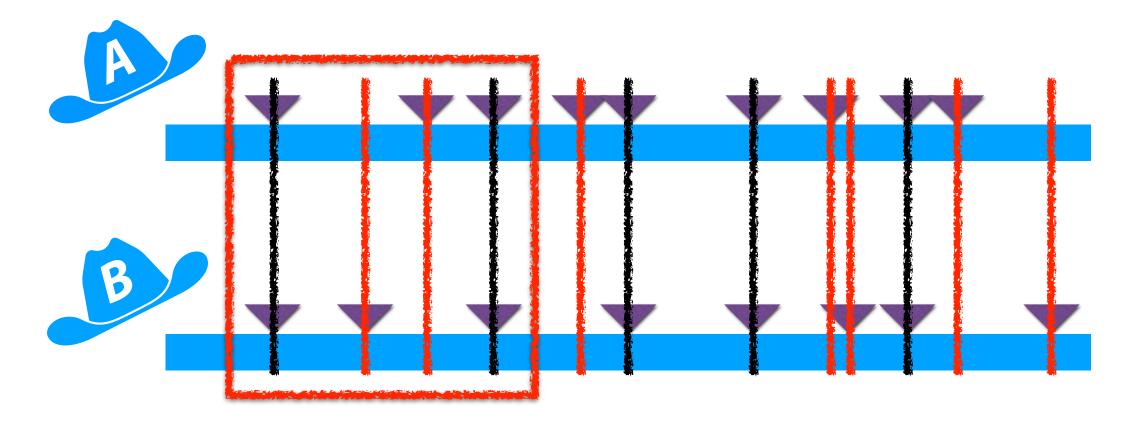
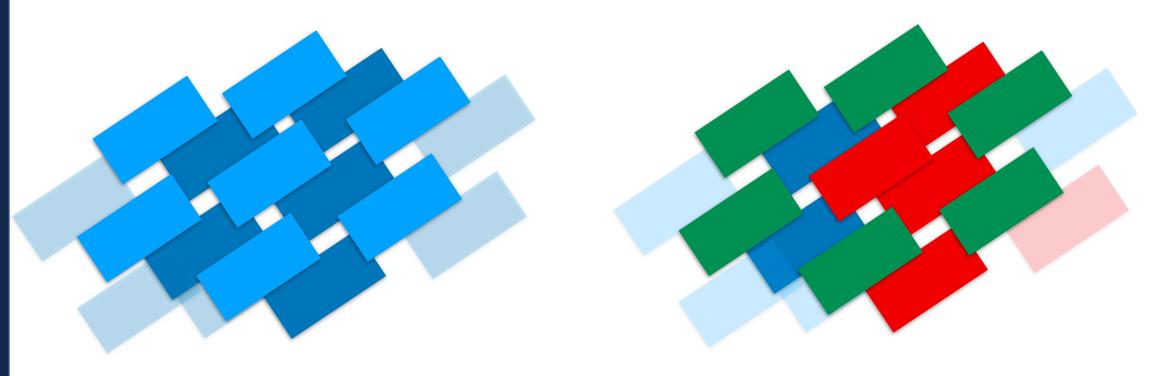


Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. *Genome Biol* 20, 232 (2019)

Minhash Sketch

An approximation for a full dataset capable of estimating set similarity



Minhash Sketch 'ADT' (Use Cases)

Constructor

Cardinality Estimation

Set Similarity Estimation

MinHash Construction

A MinHash sketch has three required inputs:

1.

2.

3.

MinHash Construction

$$h(x) = x \% 7$$

$$k = 3$$

0	
1	

т	
2	